Skip to main content
  • 182 Accesses

Summary

Full three-neutrino fits to the solar and atmospheric neutrino data seem to favor a decoupling of the parameters associated with the solar and atmospheric oscillations, and also indicate maximal or nearly maximal mixing for each type of experiment. There are many scenarios that could give bi-maximal or quasi bi-maximal mixing. Furthermore, the data strongly favors separate δm 2 scales for the solar and atmospheric oscillations, which means that apparently four neutrinos are required to also explain the LSND result. Once the solar and atmospheric oscillation scales are assumed, current beta decay limits on m ve, may be extended to include m and m in a three-neutrino model. Finally, future long-baseline and solar neutrino experiments should be able to greatly constrain the allowed ranges of the three–neutrino parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.T. Cleveland et al., Nucl. Phys. Proc. Suppl. B 38: 47 (1995); Kamiokande collaboration, Y. Fukuda et al., Phys. Rev. Lett. 77: 1683 (1996); GALLEX Collaboration, W. Hampel et al., Phys. Lett. B 388: 384 (1996); SAGE collaboration, J.N. Abdurashitov et al., Phys. Rev. Lett. 77: 4708 (1996).

    Article  ADS  Google Scholar 

  2. J.N. Bahcall and M.H. Pinsonneault,, Rev. Mod. Phys. 67: 781 (1995).

    Article  ADS  Google Scholar 

  3. Kamiokande collaboration, K.S. Hirata et al., Phys. Lett. B 280: 146 (1992); Y. Fukuda et al., Phys. Lett. B335: 237 (1994); IMB collaboration, R. Becker-Szendy et al., Nucl. Phys. Proc. Suppl. B 38: 331 (1995); Soudan-2 collaboration, W.W.M. Allison et al., Phys. Lett. B 391: 491 (1997); MACRO collaboration, M. Ambrosio et al., Phys. Lett. B 434: 451 (1998).

    Article  ADS  Google Scholar 

  4. G. Barr, T.K. Gaisser, and T. Stanev, Phys. Rev. D 39: 3532 (1989); M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 52: 4985 (1995); V. Agrawal, T.K. Gaisser, P. Lipari, and T. Stanev, Phys. Rev. D 53: 1314 (1996); T.K. Gaisser and T. Stanev, Phys. Rev. D 57: 1977 (1998).

    Article  ADS  Google Scholar 

  5. V. Barger, R.J.N. Phillips, and K. Whisnant, Phys. Rev. D 24: 538 (1981); L. Wolfenstein, Phys. Rev. D 17: 2369 (1978); S.P. Mikheyev and A. Smirnov, Yad. Fiz. 42: 1441 (1985); Nuovo Cim. 9 C: 17 (1986); H. Bethe, Phys. Rev. Lett. 56: 1305 (1986); S.P. Rosen and J.M. Gelb, Phys. Rev. D 34: 969 (1986); V. Barger, R.J.N. Phillips, and K. Whisnant, Phys. Rev. D 34: 980 (1986); S.J. Parke, Phys. Rev. Lett. 57: 1275 (1986); S.J. Parke and T.P. Walker, Phys. Rev. Lett. 57: 2322 (1986); W.C. Haxton, Phys. Rev. Lett. 57: 1271 (1986); S.L. Glashow and L.M. Krauss, Phys. Lett. B 190: 199 (1987). T.K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61: 937 (1989); A. Acker, S. Pakvasa, and J. Pantaleone, Phys. Rev. D 43: 1754 (1991); V. Barger, R.J.N. Phillips, and K. Whisnant, Phys. Rev. Lett. 69: 3135 (1992); P.I. Krastev and S.T. Petcov, Phys. Lett. B 285: 85 (1992); Phys. Rev. Lett. 72: 1960 (1994); Phys. Rev. D 53: 1665 (1996); N. Hata and P. Langacker, Phys. Rev. D 56: 6116 (1997)

    Article  ADS  Google Scholar 

  6. J.G. Learned, S. Pakvasa, and T.J. Weiler, Phys. Lett. B 207: 79 (1988); V. Barger and K. Whisnant, Phys. Lett. B 209: 365 (1988); K. Hidaka, M. Honda, and S. Midorikawa, Phys. Rev. Lett. 61: 1537 (1988).

    Article  ADS  Google Scholar 

  7. Super-Kamiokande Collaboration, talk by Y. Suzuki at Neutrino-98,Takayama, Japan, June 1998.

    Google Scholar 

  8. Super-Kamiokande Collaboration, Y. Fukuda et al., Phys. Lett. B 433: 9 (1998); Phys. Lett. B 436: 33 (1998); Phys. Rev. Lett. 81: 1562 (1998).

    Article  ADS  Google Scholar 

  9. See talk by J. Goodman, these proceedings.

    Google Scholar 

  10. Liquid Scintillator Neutrino Detector (LSND) collaboration, C. Athanassopoulos et al., Phys. Rev. Lett. 75: 2650 (1995); ibid. 77: 3082 (1996); ibid. 81: 1774 (1998); talk by H. White at Neutrino-98, Takayama, Japan, June 1998.

    Article  ADS  Google Scholar 

  11. KARMEN collaboration, K. Eitel and B. Zeitnitz, talk at Neutrino-98, Takayama, Japan, June 1998, hep-ex/9809007; future tests of the LSND results will be made by the KARMEN experiment and also by the mini-BooNE experiment, E. Church et al., nucl-ex/9706011; see also J.M. Conrad, talk at ICHEP-98, hep-ex/9811009.

    Google Scholar 

  12. See talk by K. Whisnant on four-neutrino models, these proceedings.

    Google Scholar 

  13. J.N. Bahcall, S. Basu, and M.H. Pinsonneault, Phys. Lett. B 433: 1 (1998).

    Article  ADS  Google Scholar 

  14. Early, low-statistics experiments which did not indicate a depletion of vμ (Frejus and NUSEX) are not included in Table 2.

    Google Scholar 

  15. T.K. Gaisser et al., Phys. Rev. D 54: 5578 (1996).

    Article  ADS  Google Scholar 

  16. V. Barger, K. Whisnant, and R.J.N. Phillips, Phys. Rev. Lett. 45: 2084 (1980).

    Article  ADS  Google Scholar 

  17. S.M. Bilenky and C. Giunti, hep-ph/9802201.

    Google Scholar 

  18. V. Barger and K. Whisnant, hep-ph/9812273.

    Google Scholar 

  19. V. Barger, T.J. Weiler, and K. Whisnant, Phys. Lett. B 440: 1 (1998).

    ADS  Google Scholar 

  20. For other discussions of the recent atmospheric neutrino data, see J.W. Flanagan, J.G. Learned, and S. Pakvasa, Phys. Rev. D 57: 2649 (1998); M.C. Gonzalez-Garcia, H. Nunokawa, 0. Peres, T. Stanev, and J.W.F. Valle, Phys. Rev. D 58: 033004 (1998); M.C. Gonzalez-Garcia, H. Nunokawa, 0. Peres, and J.W.F. Valle, hep-ph/9807305; C.H. Albright, K.S. Babu, and S.M. Barr, Phys. Rev. Lett. 81: 1167 (1998); J.G. Learned, S. Pakvasa, and J.L. Stone, Phys. Lett. B 435: 131 (1998); L.J. Hall and H. Murayama, Phys. Lett. B 436: 323 (1998).

    Article  ADS  Google Scholar 

  21. CHOOZ collaboration, M. Apollonio et al., Phys. Lett. B 420: 397 (1998).

    Article  ADS  Google Scholar 

  22. Similar fits have been done in J. Bahcall, P. Krastev, and A. Smirnov, Phys. Rev. D 58: 096016 (1998); see also talk by J. Bahcall, these proceedings.

    Google Scholar 

  23. V. Barger, S. Pakvasa, T.J. Weiler, and K. Whisnant, Phys. Lett. B 437: 107 (1998).

    Article  ADS  Google Scholar 

  24. A.J. Baltz, A.S. Goldhaber, and M. Goldhaber, Phys. Rev. Lett. 81: 5730 (1998).

    Article  ADS  Google Scholar 

  25. Y. Nomura and T. Yanagida, Phys. Rev. D 59: 017303 (1999); S. Davidson and S.F. King, Phys. Lett. B 445: 191 (1998).

    Google Scholar 

  26. G. Altarelli and F. Feruglio, Phys. Lett. B 439: 112 (1998); M. Jezabek and Y. Sumino, Phys. Lett. B 440: 327 (1998).

    Article  ADS  Google Scholar 

  27. C. Jarlskog, M. Matsuda, S. Skadhauge, and M. Tanimoto, hep-ph/9812282.

    Google Scholar 

  28. H. Georgi and S. Glashow, hep-ph/9808293; R.N. Mohapatra and S. Nussinov, Phys. Lett. B 441: 299 (1998); hep-ph/9809415; S.K. Kang and C.S. Kim, hep-ph/9811379; E. Ma, hep-ph/9812344.

    Google Scholar 

  29. H. Fritzsch and Z. Xing, Phys. Lett. B 372: 265 (1996); Phys. Lett. B 440: 313 (1998); M. Fukugita, M. Tanimoto, and T. Yanagida, Phys. Rev. D 57: 4429 (1998); R.N. Mohapatra and S. Nussinov, Phys. Lett. B 441: 299 (1998); hep-ph/9809415; C. Jarlskog, M. Matsuda, S. Skadhauge, and M. Tanimoto, hep-ph/9812282.

    Article  ADS  Google Scholar 

  30. See the first paper of Ref. F. Feruglio, Phys. Lett. B 439: 112 (1998) 26 and L.J. Hall and D. Smith, hep-ph/9812308.

    Article  ADS  Google Scholar 

  31. See also P.I. Krastev and S.T. Petcov, Phys. Lett. B 395: 69 (1997).

    Article  ADS  Google Scholar 

  32. See, e.g., the Particle Data Group’s 1998 Review of Particle Properties, C. Caso et al., Euro. Phys. J. 3: 1 (1998).

    Google Scholar 

  33. V. Barger, T.J. Weiler, and K. Whisnant, Phys. Lett. B 442: 255 (1998).

    Article  ADS  Google Scholar 

  34. Links to long-baseline experiments may be found at: http://www.hep.anl.gov/NDK/Hypertext/nuindustry.html

  35. S. Geer, Phys. Rev. D 57: 6989 (1998).

    Article  ADS  Google Scholar 

  36. See, e.g., the discussions in Refs. K. Whisnant, hep-ph/9812273 18. and 19.

    Google Scholar 

  37. SNO Collaboration, E. Norman et al., in proc. of The Fermilab Conference: DPF 92, November 1992, Batavia, IL, ed. by C. H. Albright, P.H. Kasper, R. Raja, and J. Yoh (World Scientific, Singapore, 1993), p. 1450.

    Google Scholar 

  38. BOREXINO Collaboration, C. Arpesella et al., “INFN Borexino proposal,” Vols. I and II, edited by G. Bellini, R. Raghavan et al. (Univ. of Milan, 1992); J. Benziger, F.P. Calaprice et al., “Proposal for Participation in the Borexino Solar Neutrino Experiment,” (Princeton University, 1996).

    Google Scholar 

  39. V. Barger, R.J.N. Phillips, and K. Whisnant, Phys. Rev. Lett. 65: 3084 (1990); Phys. Rev. D 43: 1110 (1991); S. Pakvasa and J. Pantaleone, Phys. Rev. Lett. 65: 2479 (1990).

    Article  ADS  Google Scholar 

  40. For other recent discussions of seasonal effects in solar neutrinos, see S.P. Mikheyev and A.Yu. Smirnov, Phys. Lett. B 429: 343 (1998). B. Faid, G.L. Fogli, E. Lisi, and D. Montanino, Astropart. Phys. 10: 93 (1999); S.L. Glashow, P.J. Kernan, and L.M. Krauss, Phys. Lett. B 445: 412 (1999); J.M. Gelb and S.P. Rosen, hep-ph/9809508; V. Berezinsky, G. Fiorentini, and M. Lissia, hep-ph/9811352.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Whisnant, K. (2002). Three-Neutrino Vacuum Oscillation Solutions to the Solar and Atmospheric Anomalies. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation. Springer, Boston, MA. https://doi.org/10.1007/0-306-47094-2_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47094-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46208-5

  • Online ISBN: 978-0-306-47094-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics