Skip to main content
  • 186 Accesses

Abstract

There are two motivations to consider statistics that are neither Bose nor Fermi: (1) to extend the framework of quantum theory and of quantum field theory, and (2) to provide a quantitative measure of possible violations of statistics. After reviewing tests of statistics for various particles, and types of statistics that are neither Bose nor Fermi, I discuss quons, particles characterized by the parameter q, which permit a smooth interpolation between Bose and Fermi statistics; q=1 gives bosons, q=−1 gives fermions. The new result of this talk is work by Robert C. Hilborn and myself that gives a heuristic argument for an extension of conservation of statistics to quons with trilinear couplings of the form \( \bar f\) fb , where f is fermion-like and b is boson-like. We showed that q f 2=q b. In particular, we related the bound on qg for photons to the bound on q e for electrons, allowing the very precise bound for electrons to be carried over to photons. An extension of our argument suggests that all particles are fermions or bosons to high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.V. Berry, talk in this session and M.V. Berry and J.M. Robbins, Proc. R. Soc. Lond. A 453:1771(1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. O.W. Greenberg, D.M. Greenberger and T.V. Greenbergest, in Quantum Coherence and Reality, eds. J.S. Anandan and J.L. Safko, (World Scientific, Singapore, 1994), p. 301.

    Google Scholar 

  3. O.W. Greenberg, Phys. Rev. D 43:4111(1991).

    Article  MathSciNet  ADS  Google Scholar 

  4. O.W. Greenberg and R.C. Hilborn, Univ. of Maryland Physics Paper 99-005, hep-th/9808106, to appear in Foundations of Physics 29:March, 1999 (special issue in honor of D.M. Greenberger).

    Google Scholar 

  5. O.W. Greenberg and R.C. Hilborn, Univ. of Maryland Physics Paper 99-089, quant-ph/9903020.

    Google Scholar 

  6. S. Coleman and S.L. Glashow, HUTP-98-A082, Dec 1998, 33pp, hep-ph/9812418.

    Google Scholar 

  7. R. Jackiw and V.A. Kostelecky, IUHET-400, Jan 1999. 4pp, hep-ph/9901358; and V.A. Kostelecky, IUHET-397, Oct 1998. 13pp, hep-ph/9810365.

    Google Scholar 

  8. R. Amado and H. Primakoff, Phys. Rev. C 22:1388(1980).

    Article  ADS  Google Scholar 

  9. W. Pauli, Zeitschr. f. Phys. 31:765(1925).

    Article  ADS  Google Scholar 

  10. O.W. Greenberg and R.N. Mohapatra, Phys. Rev. D 39:2032(1989).

    Article  ADS  Google Scholar 

  11. M. Goldhaber and G.S. Goldhaber, Phys. Rev. 73:1472(1948).

    Article  ADS  Google Scholar 

  12. E. Ramberg and G. Snow, Phys. Lett. B 238:438(1990).

    Article  ADS  Google Scholar 

  13. K. Deilamian, J.D. Gillaspy and D.E. Kelleher, Phys. Rev. Lett. 74:4787(1995).

    Article  ADS  Google Scholar 

  14. G.W.F. Drake, Phys. Rev. A 39:897(1989).

    Article  ADS  Google Scholar 

  15. M. de Angelis, G. Gagliardi, L. Gianfrani, and G. Tino, Phys. Rev. Lett. 76:2840(1996).

    Article  ADS  Google Scholar 

  16. R.C. Hilborn and C.L. Yuca, Phys. Rev. Lett. 76:2844(1996).

    Article  ADS  Google Scholar 

  17. G. Modugno, M. Inguscio, and G.M. Tino, Phys. Rev. Lett. 81:4790(1998).

    Article  ADS  Google Scholar 

  18. D. DeMille and N. Derr, in preparation, (1999).

    Google Scholar 

  19. G. Gentile, Nuovo Cimento 17:493(1940).

    Article  MathSciNet  Google Scholar 

  20. H.S. Green, Phys. Rev. 90:270(1953).

    Article  MATH  ADS  Google Scholar 

  21. O.W. Greenberg and A.M.L. Messiah, Phys. Rev. B 138:1155(1965).

    MathSciNet  ADS  Google Scholar 

  22. S. Doplicher, R. Haag and J. Roberts, Commun. Math. Phys. 23:199(1971) and ibid 35:49(1974).

    Article  MathSciNet  ADS  Google Scholar 

  23. R. Haag, Local Quantum Physics (Springer-Verlag, Berlin, 1992).

    MATH  Google Scholar 

  24. A.Yu. Ignatiev and V.A. Kuzmin, Yud. Fiz. 46:786(1987), [Sov. J. Nucl. Phys. 46:444(1987)].

    Google Scholar 

  25. O.W. Greenberg and R.N. Mohapatra, Phys. Rev. Lett. 59:2507(1987).

    Article  MathSciNet  ADS  Google Scholar 

  26. A.B. Govorkov, Teor. Mat. Fis. 54:361(1983) [Sov. J. Theor. Math. Phys. 54:234(1983)]; and Phys. Lett. A 137:7(1989).

    MathSciNet  Google Scholar 

  27. O.W. Greenberg and R.N. Mohapatra, Phys. Rev. Lett. 62:712(1989).

    Article  MathSciNet  ADS  Google Scholar 

  28. O.W. Greenberg, Phys. Rev. Lett. 64:705(1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Roger Hegstrom, private communication.

    Google Scholar 

  30. J. Cuntz, Commun. Math. Phys. 57:173(1977).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. S. Stanciu, Commun. Math. Phys. 147:211(1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. O.W. Greenberg, Physica A 180:419(1992).

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Zagier, Commun. Math. Phys. 147:199(1992).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  34. M. Bozejko and R. Speicher, Commun. Math. Phys. 137:519(1991).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. R. Speicher, Lett. Math. Phys. 27:97(1993).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. D.I. Fivel, Phys. Rev. Lett. 65:3361(1990); erratum, ibid 69:2020(1992).

    Article  MathSciNet  ADS  Google Scholar 

  37. E.P. Wigner, Math. und Naturwiss. Anzeiger der Ungar. Ak. der Wiss. 46:576(1929).

    MATH  Google Scholar 

  38. P. Ehrenfest and J.R. Oppenheimer, Phys. Rev. 37:333(1931).

    Article  ADS  MATH  Google Scholar 

  39. O.W. Greenberg, Phys. Lett. A 209:137(1995).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. D.I. Fivel, Phys. Rev. A. 43:4913(1991).

    Article  ADS  Google Scholar 

  41. H. Araki, J. Math. Phys. 2:267(1961).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. V.L. Teplitz, R.N. Mohapatra and E. Baron, University of Maryland Preprint 99-014, (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Greenberg, O.W. (2002). Small Violations of Statistics. In: Kursunoglu, B.N., Mintz, S.L., Perlmutter, A. (eds) Confluence of Cosmology, Massive Neutrinos, Elementary Particles, and Gravitation. Springer, Boston, MA. https://doi.org/10.1007/0-306-47094-2_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-47094-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46208-5

  • Online ISBN: 978-0-306-47094-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics