Skip to main content

Phase Separation in Models for Manganites: Theoretical Aspects and Comparison with Experiments

  • Chapter
Physics of Manganites

Part of the book series: Fundamental Materials Research ((FMRE))

  • 305 Accesses

Summary

Summarizing, a comprehensive computational study of models for manganites have found that the expected double-exchange induced strong tendencies to ferromagnetic correlations at low temperatures are in competition with a regime of “phase separation”. This regime was identified in all dimensions of interest, using one and two orbitals (the latter with Jahn-Teller phonons), and both with classical and quantum localized t2g spins. It also appears in the presence of on-site Coulomb interactions. This robustness of our results suggests that phase separation may also be present in real manganites. In the previous section experimental literature that have reported some form of charge in-homogeneity in the context of the manganites has been briefly reviewed. It is concluded that theory and experiments seem to be in qualitative agreement and phase separation tendencies (which may correspond to the formation of magnetic droplets or even stripes once Coulomb interactions beyond the on-site term are included in the analysis) should be taken seriously. They may even be responsible for the phenomenon of Colossal Magnetoresistance that motivated the current enormous interest in the study of manganites in the first place!.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Jin et al., Science 264, 413 (1994); J. M. D. Coey, M. Viret, and S. van Molnar, Mixed Valence Manganites, Adv. Phys. (1998), in press.

    Article  ADS  Google Scholar 

  2. P. E. Schiffer, A. P. Ramirez, W. Bao, and S-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995); A. P. Ramirez et al., Phys. Rev. Lett. 76, 3188 (1996); C. H. Chen and S-W. Cheong, Phys. Rev. Lett. 76, 4042 (1996); S-W. Cheong and C. H. Chen, in Colossal Magnetoresistance and Related Properties, ed. by B. Raveau and C. N. R. Rao (World Scientific).

    Article  ADS  Google Scholar 

  3. Y. Moritomo, A. Asamitsu, H. Kuwahara, Y. Tokura, Nature 380, 141 (1996).

    Article  ADS  Google Scholar 

  4. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  5. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  6. A. J. Millis, et al., Phys. Rev. Lett. 74, 5144 (1995); H. Röder, et al., Phys. Rev. Lett. 76, 1356 (1996).

    Article  ADS  Google Scholar 

  7. E. Mŭller-Hartmann and E. Dagotto, Phys. Rev. B 54, R6819 (1996).

    ADS  Google Scholar 

  8. S. Yunoki, J. Hu, A. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998).

    Article  ADS  Google Scholar 

  9. E. Dagotto, S. Yunoki, A. Malvezzi, A. Moreo, J. Hu, S. Capponi, D. Poilblanc, and N. Furukawa, Phys. Rev. B 58, 6414 (1998).

    ADS  Google Scholar 

  10. S. Yunoki and A. Moreo, Phys. Rev. B 58, 6403 (1998).

    ADS  Google Scholar 

  11. S. Yunoki, A. Moreo, and E. Dagotto, cond-mat/9807149.

    Google Scholar 

  12. V. J. Emery, S. A. Kivelson, and H. Q. Lin, Phys. Rev. Lett. 64, 475 (1990). See also V. J. Emery, and S. A. Kivelson, Physica C 209, 597 (1993).

    Article  ADS  Google Scholar 

  13. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994), and references therein.

    Article  ADS  Google Scholar 

  14. J. M. Tranquada et al., Nature 375, 561 (1995), and references therein.

    Article  ADS  Google Scholar 

  15. U. Löw et al., Phys. Rev. Lett. 72, 1918 (1994); S. Haas et al., Phys. Rev. B 51, 5989 (1995).

    Article  ADS  Google Scholar 

  16. N. Furukawa, J. Phys. Soc. Jpn. 63, 3214 (1994).

    Article  ADS  Google Scholar 

  17. J. Riera, K. Hallberg, and E. Dagotto, Phys. Rev. Lett. 79, 713 (1997).

    Article  ADS  Google Scholar 

  18. Closed shell BC or open BC are needed to stabilize a ferromagnet. If other BC are used the spin correlations at short distances are still strongly FM (if working at couplings where ferromagnetism is stable), but not at large distances where they become negative. This well-known effect was observed before in K. Kubo, J. Phys. Sot. Jpn. 51, 782 (1982); J. Zang, et al., J. Phys.: Condens. Matter 9, L157 (1997); T. A. Kaplan and S. D. Mahanti, ibid, L291 (1997); and in Ref. [17]. It does not present a problem in the analysis shown in this paper.

    Article  ADS  Google Scholar 

  19. IC effects were predicted using a Hartree-Fock approximation (J. Inoue and S. Maekawa, Phys. Rev. Lett. 74, 3407 (1995)) as an alternative to canted FM [5].

    Article  ADS  Google Scholar 

  20. See also E. L. Nagaev, Phys. Status Solidi (b) 186, 9 (1994); D. Arovas and F. Guinea, cond-mat/9711145; M. Yu. Kagan, et al., cond-mat/9804213; M. Yamanaka, W. Koshibae, and S. Maekawa, preprint, cond-mat/9807173.

    Article  ADS  Google Scholar 

  21. Y. Moritomo, A. Asamitsu and Y. Tokura, Phys. Rev. B 51, 16491 (1995).

    ADS  Google Scholar 

  22. D. D. Sarma et al., Phys. Rev. B 53, 6873 (1996).

    ADS  Google Scholar 

  23. H. Röder, et al., Phys. Rev. B 56, 5084 (1997).

    ADS  Google Scholar 

  24. A. Malvezzi, S. Yunoki, and E. Dagotto, in preparation.

    Google Scholar 

  25. Y. Murakami et al., Phys. Rev. Lett. 80, 1932 (1998).

    Article  ADS  Google Scholar 

  26. A. J. Millis et al., Phys. Rev. B 54, 5405 (1996).

    ADS  Google Scholar 

  27. Most of the work in one-dimension (1D) has been performed using t11=t22=2t 12=2t 11 (set T 1), but results have also been obtained with t11=t22 and t 12=t 21=0 (T2), as well as with the hopping that takes into account the proper orbital overlap, namely 55-1 (see S. Ishihara et al., Phys. Rev. B 56, 686 (1997)). In two-dimensions (2D), the set T 1 in both directions was used, but also the combination of T 3 in the y-direction and \( t_{11} = 3t_{22} = - \sqrt 3 t_{12} = - \sqrt 3 t_{21} \) (T 4 in the x-direction. Finally, in three-dimensions (3D) T 4 was used in the ix-direction, T 3 in the y-direction, and t 11=t 12=t 21=0, t 22=4/3 (T 5) in the z-direction.

    ADS  MathSciNet  Google Scholar 

  28. This approximation was shown to be accurate in Ref. J. Hu, A. Malvezzi, A. Moreo, N. Furukawa, and E. Dagotto, Phys. Rev. Lett. 80, 845 (1998). E. Dagotto, S. Yunoki, A. Malvezzi, A. Moreo, J. Hu, S. Capponi, D. Poilblanc, and N. Furukawa, Phys. Rev. B 58, 6414 (1998) [8, 9].

    Article  ADS  Google Scholar 

  29. J. Kanamori, J. Appl. Phys. (Suppl.) 31, 145 (1960).

    Article  Google Scholar 

  30. T. G. Perring et al., Phys. Rev. Lett. 78, 3197 (1997).

    Article  ADS  Google Scholar 

  31. J. B. Goodenough, Phys. Rev. 100, 565 (1955); K. I. Kugel and D. I. Khomskii, JETP Lett. 15, 446 (1972); S. Ishihara, J. Inoue and S. Maekawa, Phys. Rev. B 55, 8280 (1997); T. Mizokawa and A. Fujimori, Phys. Rev. B 56, R493 (1997).

    Article  ADS  Google Scholar 

  32. In Ref. [27], a MIT at □ ~ 1 was also found but it was not associated with orbital order.

    ADS  Google Scholar 

  33. The energies needed for this construction are obtained at low-T from the MC evolution of the density A. Moreo, Phys. Rev. B 58, 6403 (1998) [10].

    ADS  Google Scholar 

  34. P. G. Radaelli et al., talk given at the Second International Conference on Stripes and High Tc Superconductivity, Rome, June 2–6 (1998). The results of Ref. [11] were presented at the same conference session by one of the authors (A.M.).

    Google Scholar 

  35. M. Quijada et al., cond-mat/9803201. See also S. G. Kaplan et al., Phys. Rev. Lett. 77, 2081 (1996); Y. Okimoto et al., Phys. Rev. Lett. 75, 109 (1995) and Phys. Rev. B 55, 4206 (1997); T. Ishikawa et al., Phys. Rev. B 57, R8079 (1998).

    Google Scholar 

  36. J. H. Jung et al., Phys. Rev. B 57, R11043 (1998); K. H. Kim et al., condmat/9804167 and 9804284.

    ADS  Google Scholar 

  37. J. M. De Teresa et al., Nature (London) 386, 256 (1997).

    Article  ADS  Google Scholar 

  38. M. Hennion et al., Phys. Rev. Lett. 81, 1957 (1998)

    Article  ADS  Google Scholar 

  39. J. W. Lynn et al., Phys. Rev. Lett. 76, 4046 (1996).

    Article  ADS  Google Scholar 

  40. G. Allodi et al., Phys. Rev. B 56, 6036 (1997).

    ADS  Google Scholar 

  41. D. E. Cox et al., Phys. Rev. B 57, 3305 (1998).

    ADS  Google Scholar 

  42. Wei Bao et al., Solid State Comm. 98, 55 (1996).

    Article  ADS  Google Scholar 

  43. Y. Yamada et al., Phys. Rev. Lett. 77, 904 (1996).

    Article  ADS  Google Scholar 

  44. M. Roy, J. F. Mitchell, A. P. Ramirez, and P. Schiffer, preprint.

    Google Scholar 

  45. C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, and J. J. Neumeier, Phys. Rev. Lett. 80, 853 (1998); Phys. Rev. B 57, 10440 (1998).

    Article  ADS  Google Scholar 

  46. M. Jaime, P. Lin, M. B. Salamon, P. Dorsey, and M. Rubinstein, preprint.

    Google Scholar 

  47. J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 80, 2665 (1998).

    Article  ADS  Google Scholar 

  48. S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. D. Thompson, M. F. Hundley, and J. Sarrao, proceedings of the workshop “Physics of Manganites”, Michigan State University, July 1988, Eds. T. Kaplan and S. D. Mahanti (this volume).

    Google Scholar 

  49. M. R. Ibarra, G-M. Zhao, J. M. De Teresa, B. Garcia-Landa, Z. Arnold, C. Marquina, P. A. Algarabel, H. Keller, and C. Ritter, Phys. Rev. B 57, 7446 (1998).

    ADS  Google Scholar 

  50. J. J. Rhyne, H. Kaiser, H. Luo, Gang Xiao, and M. L. Gardel, J. Appl. Phys. 93, 7339 (1998).

    Article  ADS  Google Scholar 

  51. R. H. Heffner et al., Phys. Rev. Lett. 77, 1869 (1996).

    Article  ADS  Google Scholar 

  52. J. H. Jung, K. H. Kim, H. J. Lee, J. S. Ahn, N. J. Hur, T. W. Noh, M. S. Kim, and J.-G. Park, cond-mat/9809107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Dagotto, E., Yunoki, S., Moreo, A. (2002). Phase Separation in Models for Manganites: Theoretical Aspects and Comparison with Experiments. In: Kaplan, T.A., Mahanti, S.D. (eds) Physics of Manganites. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47091-8_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-47091-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46132-3

  • Online ISBN: 978-0-306-47091-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics