Skip to main content

Electron Correlations in Coulomb Systems in 2 and 3 Dimensions

  • Chapter
Book cover Strongly Coupled Coulomb Systems
  • 44 Accesses

Abstract

In this overview, the recent theoretical (and some experimental) works on a variety of physical properties that arise from correlations among electrons interacting via Coulomb interactions in three and two-dimensional systems will be discussed. The subject matter has a long 70 year history which we meander through in this brief presentation, even after exclusion of several important aspects of the problem. The astrophysical and nuclear physics aspects of these problems will not be discussed. The main focus will be concerning issues of condensed matter physics. Also not discussed in this presentation is the important works on the electron correlations based on the Slater-Hubbard model (with a relatively shorter 40-year history) which is central in the recent discussions of strongly coupled systems such as high temperature superconductors and magnetic materials. Excluded also from discussion here is the effects of disorder, which is a separate topic in itself. Included in this talk will be spin-polarization as well as finite temperature effects, in both bulk and semi-infinite situations, and electron-hole plasmas. Interesting physical situations of two-dimensionality occuring in Mosfets, semiconductor heterojunctions, and electrons on cylindrical surfaces as in carbon nanotubules, will be briefly touched upon as they possess rich consequences of correlations. The effects of quantizing magnetic fields and the relativistic situations will only be mentioned in passing. Theoretical techniques used fall basically into five categories in my classification:

  1. (1)

    wave function methods-variational and nonvariational,

  2. (2)

    phenomenological/intuitive methods subsumed by diagrammatic techniques,

    1. (a)

      collective excitation theory of Bohm-Pines leading to Boson formulation,

    2. (b)

      dielectric formulation of Singwi and coworkers,

    3. (c)

      Fermi liquid theory of Landau, culminating in diagrammatic perturbation theory of Gell-Mann and Brueckner which in various forms contains all these and had important off-shoots,

  3. (3)

    Quantum Monte Carlo methods,

  4. (4)

    the method of Green functions, and finally,

  5. (5)

    density-functional method of Kohn and coworkers.

Each of these had different insights to offer which we will spell out. Very recent work on the single particle Green function will also be discussed because of its implications to several physical properties of the system. A brief discussion of pair correlations and response functions is given as this provides information on collective properties such as plasma and spin wave oscillations, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Sommerfeld, Ibid. 47, 1, 47 (1928).

    Google Scholar 

  2. W. Pauli, Z. Phys. 41, 81 (1927).

    Article  ADS  Google Scholar 

  3. F. Bloch, Ibid. 57, 545 (1929).

    Article  ADS  MATH  Google Scholar 

  4. W. Heisenberg, Ibid. 48, 619 (1928).

    ADS  Google Scholar 

  5. W. Heitler and F. London, Ibid. 44, 455 (1927); 46, 47 (1927); 47, 835 (1928).

    Article  ADS  Google Scholar 

  6. D. R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111 (1928).

    Article  MATH  Google Scholar 

  7. P. A. M. Dirac, Ibid. 26, 376 (1930).

    Article  MATH  Google Scholar 

  8. J. C. Slater, Phys. Rev. 35, 210 (1930).

    Article  ADS  Google Scholar 

  9. V. A. Fock, Z. Phys. 61, 126 (1930).

    Article  ADS  MATH  Google Scholar 

  10. F. Bloch, Ibid. 52, 555 (1928).

    MATH  ADS  Google Scholar 

  11. A. H. Wilson, Proc. Roy. Soc. (London) A133, 458 (1931).

    ADS  Google Scholar 

  12. E. P. Wigner, Phys. Rev. 46, 1002 (1934); E. P. Wigner and J. Bardeen, Ibid. 48, 84 (1935).

    Article  ADS  MATH  Google Scholar 

  13. J. Bardeen, Ibid. 49, 653 (1936).

    Article  ADS  Google Scholar 

  14. L. N. Cooper, Ibid. 104, 1189 (1956).

    Article  ADS  MATH  Google Scholar 

  15. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Ibid. 108, 1175 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. W. Kohn and J. M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. W. Overhauser, Ibid. 128, 1437 (1962).

    ADS  MATH  Google Scholar 

  18. A. K. Rajagopal, Ibid. 137, A1429 (1965); see also, P. A. Fedders and P. C. Martin, Ibid. 143, 245(1966).

    ADS  Google Scholar 

  19. A. K. Rajagopal, Ibid. 142, 152 (1966).

    ADS  MathSciNet  Google Scholar 

  20. E. Fawcett, Rev. Mod. Phys. 60, 209 (1988) and references therein. For an earlier review and bibliography, see A. Arrott, Antiferromagnetism in Metals and Alloys (1966) Vol.II, Part B, and C. Herring, Exchange Interactions Among Itinerant Electrons(1966) Vol.IV, in the Rado-Suhl series on MAGNETISM, Academic Press, New York.

    Article  ADS  Google Scholar 

  21. D. Bohm and D. Pines, Ibid. 92, 609 (1953).

    MathSciNet  MATH  Google Scholar 

  22. M. Gell-Mann and K. A. Brueckner, Ibid. 106, 364 (1957).

    MathSciNet  MATH  Google Scholar 

  23. D. Pines, The Many-Body Problem, W. A. Benjamin, Inc. (New York) (1961).

    Google Scholar 

  24. H. L. Morrison, The Quantum Theory of Many-Particle Systems, Gordon and Breach, (New York) (1962).

    Google Scholar 

  25. A. Bijl, Physica 7, 869 (1940).

    Article  MATH  ADS  Google Scholar 

  26. R. B. Dingle, Phil. Mag. 40, 573 (1949).

    MATH  Google Scholar 

  27. R. Jastrow, Phys. Rev. 98, 1479 (1955).

    Article  ADS  MATH  Google Scholar 

  28. J. G. Zabolitzky, Phys. Rev. B22, 2353 (1980).

    ADS  Google Scholar 

  29. D. L. Freeman, Ibid. B15, 5512 (1977).

    ADS  Google Scholar 

  30. R. F. Bishop and K. H. Luhrmann, Ibid. B17, 3757 (1978).

    ADS  Google Scholar 

  31. F. Coester and H. Kummel, Nucl. Phys. 17, 477 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Cizek, J. Chem. Phys. 45, 4256 (1966).

    Article  ADS  Google Scholar 

  33. A. K. Rajagopal, H. Brooks, and N. R. Ranganathan, Suppl. Nuovo Cim.(I) 5, 807 (1967).

    Google Scholar 

  34. U. von Barth and L. Hedin, J. Phys. C5, 1629 (1972).

    ADS  Google Scholar 

  35. A. K. Rajagopal, S. P. Singhal, M. Banerjee, and J. C. Kimball, Phys. Rev. B17, 2262 (1978).

    ADS  Google Scholar 

  36. E. Krotscheck, Ann. Phys. (NY) 155, 1 (1984).

    Article  ADS  Google Scholar 

  37. E. Krotscheck, W. Kohn, and Guo-Xin Qian, Phys. Rev. 32, 5693 (1985).

    Article  ADS  Google Scholar 

  38. K S. Singwi, M. P. Tosi, R. H. Land, and A. Sjolander, Phys. Rev. 176, 589 (1968).

    Article  ADS  Google Scholar 

  39. K. S. Singwi in Strongly Coupled Plasmas, edited by G. Kalman, Plenum Press, (New York)(1978), p.259.

    Google Scholar 

  40. G. Kalman in Strongly Coupled Plasmas, edited by G. Kalman, Plenum Press, (New York)(1978), p. l43.

    Google Scholar 

  41. J. Arponen and E. Pajanne, Ann. Phys. (NY) 91, 450 (1975).

    Article  ADS  Google Scholar 

  42. E. Pajanne, Ph. D. Thesis, Helsinki (1982).

    Google Scholar 

  43. L. D. Landau, Soviet Physics JETP, 3, 920 (1957); Ibid. 5, 101 (1957); Ibid. 8, 70 (1959).

    MATH  MathSciNet  Google Scholar 

  44. P. Nozieres, Theory of Interacting Fermi Systems, W. A. Benjamin, Inc. (New York) (1964), references therein.

    MATH  Google Scholar 

  45. D. Cepereley, Phys. Rev. B18, 3126 (1978).

    ADS  Google Scholar 

  46. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  47. D. L. Freeman, Solid St. Comm. 26, 289 (1978).

    Article  ADS  Google Scholar 

  48. P. H. Acioli and D. M. Ceperley, Phys. Rev. B54, 17199 (1996).

    ADS  Google Scholar 

  49. V. Galitiskii and A. Migdal, Sov. Phys. JETP, 7, 96 (1958).

    Google Scholar 

  50. V. Galitiskii, Ibid. 7, 104 (1958).

    Google Scholar 

  51. J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. L. Hedin, Phys. Rev. 139, A796 (1965).

    Article  ADS  Google Scholar 

  53. B. Holm, Ph. D. Thesis, Lund (1997).

    Google Scholar 

  54. M. Hindgren, Ph. D. Thesis, Lund (1997).

    Google Scholar 

  55. U. Gupta and A. K. Rajagopal, Phys. Repts. 87, 259 (1982) and references therein.

    Article  ADS  Google Scholar 

  56. D. G. Kanhere, P. V. Panat, A. K. Rajagopal, and J. Callaway, Phys. Rev. A33, 490 (1986).

    ADS  Google Scholar 

  57. S. Hong and G. D. Mahan, Ibid. B53, 1215 (1996).

    ADS  Google Scholar 

  58. P. Hohenberg and W. Kohn, Phys. Rev. 136B, 864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  59. R. M. Dreizler and E. K. U. Gross, Density Functional Theory, Springer-Verlag (New York) (1990).

    MATH  Google Scholar 

  60. Articles in Topics in Current Chemistry, on Density Functional Theory, in 4 Volumes, edited by R. F. Nalewajski, Springer-Verlag, (New York), (1996).

    Google Scholar 

  61. N. D. Lang, Solid State Physics, 28, 225 (1973), and references therein.

    Article  Google Scholar 

  62. M. M. Pant and A. K. Rajagopal, Sol. St. Comm. 10, 1157 (1972).

    Article  ADS  Google Scholar 

  63. R. L. Kautz and B. B. Schwartz, Phys. Rev. B14, 2017 (1976).

    ADS  Google Scholar 

  64. C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).

    Article  ADS  Google Scholar 

  65. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  66. A. K. Rajagopal and J. C. Kimball, Phys. Rev. B15, 2819 (1977).

    ADS  Google Scholar 

  67. M. Jonson, J. Phys. C9, 3055 (1976).

    ADS  Google Scholar 

  68. D. L. Freeman, J. Phys. C16, 711 (1983).

    ADS  Google Scholar 

  69. F. Stern, Phys. Rev. Lett. 18, 546 (1967).

    Article  ADS  Google Scholar 

  70. A. K. Rajagopal, Phys. Rev. B15, 4264 (1977).

    ADS  Google Scholar 

  71. R. J. Radtke, P. I. Tamborenea, and S. Das Sarma, Ibid. B54, 13832 (1996).

    ADS  Google Scholar 

  72. P. J. Lin-Chung and A. K. Rajagopal, J. Phys.: Condensed Matter, 6, 3697 (1994); and, P. J. Lin-Chung and A. K. Rajagopal, Phys. Rev. B49, 8454 (1994).

    Article  ADS  Google Scholar 

  73. E. L. Shirley, Phys. Rev. B54, 7758 (1996).

    ADS  Google Scholar 

  74. U. von Barth and B. Holm, Ibid. B54, 8411 (1996); erratum Ibid. 55, 10120 (1997).

    ADS  Google Scholar 

  75. F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. (1997), to appear, references therein. I thank FA for giving me a copy of the early version of this article.

    Google Scholar 

  76. A. K. Rajagopal, Phys. Rev. A6, 1239 (1972).

    ADS  Google Scholar 

  77. A. K. Rajagopal, Ibid. B17, 2980 (1978).

    ADS  MathSciNet  Google Scholar 

  78. A. K. Rajagopal, J. C. Kimball, and M. Banerjee, Ibid. B18, 2339 (1978).

    ADS  Google Scholar 

  79. J. C. Kimball, Ibid. A7, 1648 (1973); see also, J. Phys. A8, 1513 (1973).

    ADS  Google Scholar 

  80. W. Pickett and J. Q. Broughton, Phys. Rev. B48, 14859 (1993).

    ADS  Google Scholar 

  81. R. G. Dandrea, N. W. Ashcroft, and A. E. Carlsson, Ibid. B34, 2097 (1986).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rajagopal, A.K. (2002). Electron Correlations in Coulomb Systems in 2 and 3 Dimensions. In: Kalman, G.J., Rommel, J.M., Blagoev, K. (eds) Strongly Coupled Coulomb Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47086-1_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47086-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46031-9

  • Online ISBN: 978-0-306-47086-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics