Skip to main content

Crystallizing White Dwarfs

  • Chapter
Strongly Coupled Coulomb Systems
  • 35 Accesses

Conclusions

Sedimentation of heavy chemical species upon crystallization represents a major source of energy for cool white dwarfs. The delay introduced by the C+O separation amounts 1 to 2 Gyr, depending on the chemical profile. Minor species are the main source of uncertainty since neon can introduce a delay in the range of 0.5 to 9 Gyr, while iron can introduce an additional delay of 1 Gyr. Therefore, it is of the highest importance to understand the behavior of the minor species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Antona, F., Mazzitelli, I., 1990, Cooling of white dwarfs, Ann. Rev. Astron. Astrophys. 28: 139.

    Article  ADS  Google Scholar 

  2. Isern, J., Mochkovitch, R., García-Berro, E., Hernanz, M., 1991, The role of the minor chemical species in the cooling of white dwarfs, Astron. Astrophys. 241: L29

    ADS  Google Scholar 

  3. Isern, J., Mochkovitch, R., García-Berro, E., Hernanz, M., 1997, The physics of crystallizing white dwarfs, Astrophys. J. 485: 308.

    Article  ADS  Google Scholar 

  4. Lamb, D. Q., Van Horn, H. M., 1975, Evolution of crystallizing pure 12C white dwarfs, Astrophys. J. 200: 306.

    Article  ADS  Google Scholar 

  5. Mestel, L., 1952, On the theory of white dwarf stars. I. The energy sources of white dwarfs, MNRAS 112: 583.

    ADS  Google Scholar 

  6. Mochkovitch, R., 1983, Freezing of a carbon-oxygen white dwarf, Astron. Astrophys. 122: 212.

    ADS  Google Scholar 

  7. Schatzman, E. 1958, in “Hdb. d. Phys.” Vol. 51, S. Flûge editor, (Berlin: Springer Verlag)

    Google Scholar 

  8. Ségretain, L., Chabrier, G., 1993, Crystallization of binary ionic mixtures in dense stellar plasmas, Astron. Astrophys. 271: L13.

    Google Scholar 

  9. Ségretain, L., Chabrier, G., Hernanz, M., García-Berro, E., Isern, J., Mochkovitch, R., 1994, Cooling theory of crystallized white dwarfs, Astrophys. J. 434: 641.

    Article  ADS  Google Scholar 

  10. Shaviv, G., Kovetz, A., 1976, The cooling of carbon-oxygen white dwarfs, Astron. Astrophys 51: 383.

    ADS  Google Scholar 

  11. Stevenson, D. J., 1980, A eutectic in carbon-oxygen white dwarfs, J. Phys. Suppl. No 3, 41: C2–53.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Isern, J., García-Berro, E., Hemanz, M., Mochkovitch, R. (2002). Crystallizing White Dwarfs. In: Kalman, G.J., Rommel, J.M., Blagoev, K. (eds) Strongly Coupled Coulomb Systems. Springer, Boston, MA. https://doi.org/10.1007/0-306-47086-1_40

Download citation

  • DOI: https://doi.org/10.1007/0-306-47086-1_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46031-9

  • Online ISBN: 978-0-306-47086-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics