Skip to main content

Scaling Behavior of the Normal State Properties and the Superfluid Density in Metallic YBa 2 Cu 3 O x Cuprates

  • Chapter
  • 465 Accesses

Part of the book series: NATO Science Series: B: ((NSSB,volume 371))

Abstract

We have studied the effect of reduced oxygen content x on the temperature dependence of resistivity ρ(T) and the Hall number n H (T) of metallic YBa 2 Cu 3 O x (YBCO) epitaxial films. These results have been analyzed in terms of the Hall angle cotθv H , which demonstrates a quadratic-like temperature dependence for all x values, with the systematic deviations at high and low doping levels. We have shown that the ρ(T), n H (T), cotθ H (T 2) data for all metallic YBCO compositions fall onto single curves by scaling the temperature with T O , the temperature above which resistivity becomes linear with temperature. The comparison with the transport data for other cuprates reported in literature strongly indicates that the observed scaling behavior is universal for underdoped cuprates. Furthermore we show that the NMR Knight shift data for oxygen deficient YBCO can also be mapped on a single scaling curve, by using the same scaling parameter T O (x) derived from our transport measurements. These findings demonstrate that the spin correlations, which determine magnetic properties, are also governing the transport of the high-T c cuprates. Therefore, it is then most likely that T O is related to the opening of a spin pseudo gap. Finally, by using the NMR decoration technique we have studied the temperature dependence of the superfluid density ns(T) ∝ λ -2 (T) in YBCO powders in the superconducting state as a function of the oxygen content x. The evolution of the behavior of the λ(T) with doping is discussed in the framework of the d-wave pairing model and is also compared with the theory based on the solution of the Eliashberg equations which takes into account anisotropy and the presence of an intermediate electron-phonon coupling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a review, see N.P. Ong, in: Physical Properties of High Temperature Superconductors II, edited by D.M. Ginsberg, World Scientific, Singapore (1991), p. 459.

    Google Scholar 

  2. For a review, see Y. Iye, in: Physical Properties of High Temperature Superconductors III, edited by D.M. Ginsberg, World Scientific, Singapore (1993), p. 285.

    Google Scholar 

  3. B. Wuyts, E. Osquiguil, M. Maenhoudt, S. Libbrecht, Z.X. Gao, and Y. Bruynseraede, Influence of the oxygen content on the normal-state Hall angle in YBa 2 Cu 3 O x films, Phys. Rev. B 47 5512 (1993).

    Article  ADS  Google Scholar 

  4. B. Wuyts, E. Osquiguil, M. Maenhoudt, S. Libbrecht, Z.X. Gao, and Y. Bruynseraede, Relation between the Hall angle slope and the carrier density in oxygen-depleted YBa 2 Cu 3 O x films, Physica C 222, 341 (1994).

    Article  ADS  Google Scholar 

  5. B. Wuyts, V.V. Moshchalkov, and Y. Bruynseraede, Scaling of the normal-state transport properties of underdoped YBa 2 Cu 3 O x Phys. Rev. B 51, 6115 (1995); B. Wuyts, V.V. Moshchalkov, and Y. Bruynseraede, Resistivity and Hall effect of metallic oxygen-deficient YBa 2 Cu 3 O x films in the normal state, Phys. Rev. B 53, 9418 (1996).

    Article  ADS  Google Scholar 

  6. T. Ito, K. Takenaka, and S. Uchida, Systematic deviation from T-linear behavior in the in-plane resistivity of YBa 2 Cu 3 O 7-y : Evidence for dominant spin scattering, Phys. Rev. Lett. 70, 3995 (1993).

    Article  ADS  Google Scholar 

  7. B. Batlogg, H.Y. Hwang, H. Takagi, R.J. Cava, H.L. Kao, and J. Kwo, Normal State Phase Diagram of (La,Sr) 2 CuO 4 from Charge and Spin Dynamics, Physica C 235-240, 130 (1994).

    Article  ADS  Google Scholar 

  8. A. Carrington, A.P. Mackenzie, C.T. Lin, and J.R. Cooper, Temperature dependence of the Hall angle in single crystal YBa 2 (Cu 1-x Co x ) 3 O 7-δ , Phys. Rev. Lett. 69, 2855 (1992).

    Article  ADS  Google Scholar 

  9. H.Y. Hwang, B. Batlogg, H. Takagi, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F. Peck, Jr., Scaling of the temperature dependent Hall effect in La 2-x Sr x CuO 4 , Phys. Rev. Lett. 72, 2636 (1994).

    Article  ADS  Google Scholar 

  10. B. Wuyts, Z.X. Gao, S. Libbrecht, M. Maenhoudt, E. Osquiguil, and Y. Bruynseraede, Growth of particle-free YBa 2 Cu 3 O 7 films by off-axis sputtering, Physica C 203, 235 (1992).

    Article  ADS  Google Scholar 

  11. E. Osquiguil, M. Maenhoudt, B. Wuyts, and Y. Bruynseraede, Controlled preparation of oxygen deficient YBa 2 Cu 3 O x films, Appl. Phys. Lett. 60, 1627 (1992).

    Article  ADS  Google Scholar 

  12. J. Harris, Y.F. Yan, and N.P. Ong, Experimental test of the T 2 law for the Hall angle from T c to 500K in oxygen-reduced YBa 2 Cu 3 O 6+x crystals, Phys. Rev. B 46, 14293 (1992).

    Article  ADS  Google Scholar 

  13. P. Xiong, G. Xiao, and X.D. Wu, Hall angle in YBa 2 Cu 3 O 7-δ epitaxial films: Comparison between oxygen reduction and Pr doping, Phys. Rev. B 47, 5516 (1993).

    Article  ADS  Google Scholar 

  14. E.C. Jones, D.K. Christen, J.R. Thompson, R. Feenstra, S. Zhu, D.H. Lowndes, J.M. Phillips, M.P. Siegal, and J.D. Budai, Correlations between the Hall coefficient and the superconducting transport properties of oxygen-deficient YBa 2 Cu 3 O 7-δ epitaxial thin films, Phys. Rev. B 47, 8986 (1993).

    Article  ADS  Google Scholar 

  15. A. Carrington, D.J.C. Walker, A.P. Mackenzie, and J.R. Cooper, Hall effect and resistivity of oxygen-deficient YBa 2 Cu 3 O 7-δ thin films, Phys. Rev. B 48, 13051 (1993).

    Article  ADS  Google Scholar 

  16. R. Decca, E. Osquiguil, F. de la Cruz, C. D’Ovidio, M.T. Malachevski, and D. Esparza, Non linear temperature dependence of the resistivity of La-Sr-Cu-O: Effects of Sr content, Solid State Commun. 69, 355 (1989).

    Article  ADS  Google Scholar 

  17. H. Takagi, B. Batlogg, H.L. Kao, J. Kwo, R.J. Cava, J.J. Krajewski, and W.F. Peck, Jr., Systematic evolution of temperature dependent resistivity in La 2-x Sr x CuO 4 , Phys. Rev. Lett. 69, 2975 (1992).

    Article  ADS  Google Scholar 

  18. L. Hofmann, K. Harl, and K. Samwer, Normal-state Hall effect and resistivity measurements of YBa 2 Cu 3 O x films with different oxygen content, Z. Phys. B 95, 173 (1994).

    Article  ADS  Google Scholar 

  19. B. Bucher, P. Steiner, J. Karpinski, E. Kaldis, and P. Wachter, Influence of the spin gap on the normal state transport in YBa 2 Cu 3 O 8 , Phys. Rev. Lett. 70, 2012 (1993)

    Article  ADS  Google Scholar 

  20. T. Nakano, M. Oda, C. Manabe, N. Mompno, Y. Miura, and M. Ido, Magnetic properties and electronic conduction of superconducting La 2-x Sr x CuO 4 , Phys. Rev. B 49, 16000 (1994).

    Article  ADS  Google Scholar 

  21. T.M. Rice, in: The Physics and Chemistry of Oxide Superconductors, edited by Y. Iye and H. Yasuoka, Springer-Verlag, Berlin (1992).

    Google Scholar 

  22. H. Alloul, Comment on “Nature of the conduction-band states in YBa 2 Cu 3 O 7 as revealed by its yttrium Knight shift”, Phys. Rev. Lett. 63, 689 (1989).

    Article  ADS  Google Scholar 

  23. T. Nishikawa, J. Takeda, and M. Sato, Anomalous temperature dependence of the Hall coefficient in La 2-x Sr x CuO 4 above room temperature, J. Phys. Soc. Jpn. 62, 2568 (1993).

    Article  ADS  Google Scholar 

  24. I. François, C. Jaekel, G. Kyas, R. Heeres, D. Dierickx, H. Rokos, V.V. Moshchalkov, Y. Bruynseraede, H. Kurz, and G. Borghs, Influene of Pr-doping and oxygen deficiency on the scattering behavior of YBa 2 Cu 3 O 7 thin films, Phys. Rev. B 53, 12502 (1996).

    Article  ADS  Google Scholar 

  25. N. Nagaosa and P.A. Lee, Ginzburg-Landau theory of the spin-charge-seperated system, Phys. Rev. B 45, 966 (1992).

    Article  ADS  Google Scholar 

  26. C. Quitmann, D. Andrich, C. Jarchow, M. Fluster, B. Beschoten, G. Güntherodt, V.V. Moshchalkov, G. Mante, and R. Manzke, Scaling behavior at the insulator-metal transition in BiSrCaYCuO, Phys. Rev. B 46, 11813 (1992).

    Article  ADS  Google Scholar 

  27. V.V. Moshchalkov, Transport phenomena and magnetic susceptibility of highly correlated charge carriers, Physica B 163, 59 (1990); V.V. Moshchalkov, High-T c cuprates as two-dimensional quatum antiferromagnets, Solid State Commun. 86, 715 (1993)

    Article  ADS  Google Scholar 

  28. B. Batlogg, in the proceedings of this NATO/ASI in Cargèse, September 1–13, 1997, Plenum Press.

    Google Scholar 

  29. H.B. Brom and H. Alloul, The flux pattern in the high-T c superconductor YBa 2 Cu 3 O 8 studied by 89 Y-NMR, Physica C 185-189, 1789 (1991).

    Article  ADS  Google Scholar 

  30. P. Pincus, A.C. Gossard, V. Jaccarino, and J.H. Wernick, NMR measurements of the flux distribution in type II superconductrors, Phys. Lett. 13, 21 (1964).

    Article  ADS  Google Scholar 

  31. B. Pümpin, H. Keller, W. Kündig, W. Odermatt, I.M. Savić, J.W. Schneider, H. Simmler, and P. Zimmermann, Measurement of the London penetration depths in YBa 2 Cu 3 O x by means of spin rotation (εSR) experiments, Physica C 162–164, 151 (1989).

    Article  Google Scholar 

  32. D.R. Harshman, L.F. Schneemeyer, J.V. Waszczak, G. Aeppli, R.J. Cava, B. Batlogg, L.W. Rupp, E.J. Ansaldo, and D.LI. Williams, Magnetic penetration depth in single-crystal YBa 2 Cu 3 O 7-δ Phys. Rev. B 39, 851 (1989).

    Article  ADS  Google Scholar 

  33. N. Bontemps, D. Davidov, P. Monod. and R. Even, Determination of the spatial length scale of the magnetic-field distribution in the YBa 2 Cu 3 O 7 ceramic by surface EPR, Phys. Rev. B 43, 11512 (1991).

    Article  ADS  Google Scholar 

  34. N. Athanassopoulou, J.R. Cooper, and J. Chrosch, Variation of the magnetic penetration depth of YBa 2 Cu 3 O 7-δ with oxygen depletion, Physica C 235-240, 1835 (1994).

    Article  ADS  Google Scholar 

  35. L. Krusin-Elbaum, R.L. Greene, F. Holtzberg, A.P. Malozemoff, and Y. Yeshurun, Direct measurement of the temperature-dependent magnetic penetration depth in Y-Ba-Cu-O crystals, Phys. Rev. Lett. 62, 217 (1989).

    Article  ADS  Google Scholar 

  36. W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, and K. Zhang, Precision Measurements of the temperature dependence of λ in YBa 2 Cu 3 O 6.95 : Strong evidence for nodes in the gap function, Phys. Rev. Lett. 70, 3999 (1993); W.N. Hardy, in the proceedings of this NATO/ASI in Cargése, September 1–13, 1997, Plenum Press.

    Article  ADS  Google Scholar 

  37. N. Klein, N. Tellmann, H. Schulz, K. Urban, S.A. Wolf, and V.Z. Kresin, Evidence of two-gap s-wave superconductivity in Evidence of two-gap s-wave superconductivity in YBa 2 Cu 3 O 7-x from microwave surface impedance measurements, Phys. Rev. Lett. 71, 3355 (1993).

    Article  ADS  Google Scholar 

  38. M.R. Beasley, Recent penetration depth measurements of the high-T c superconductors and their implications, Physica C 209, 43 (1993).

    Article  ADS  Google Scholar 

  39. P.J. Hirschfeld and N. Goldenfeld, Effect of strong scattering on the low-temperature penetration depth of a d-wave superconductor, Phys. Rev. B 48, 4219 (1993).

    Article  ADS  Google Scholar 

  40. S.D. Adrian, M.E. Reeves, S.A. Wolf, and V.Z. Kresin, Penetration depth in layered superconductors: Application to the cuprates and conventional multilayers, Phys. Rev. B 51, 6800 (1995).

    Article  ADS  Google Scholar 

  41. P. Zimmermann, H. Keller, S.L. Lee, I.M. Savić, M. Warden, D. Zech, R. Cubitt, E.M. Forgan, E. Kaldis, J. Karpinski, and C. Krüger, Muon-spin-rotation studies of the temperature dependence of the magnetic penetration depth in the YBa 2 Cu 3 O x family compounds, Phys. Rev. B 52, 541 (1995).

    Article  ADS  Google Scholar 

  42. A.A. Abrikosov and R.A. Klemm, The dependence of Δ and T c on hopping and the temperature variation of Δ in a layered model of HTSC, Physica C 191, 224 (1992).

    Article  ADS  Google Scholar 

  43. A. Steegmans, R. Provoost, V.V. Moshchalkov, R.E. Silverans, S. Libbrecht, A. Buekenhoudt and Y. Bruynseraede, Study of the vortex-state field distribution in superconducting Nb 3 Sn by the NMR decoration technique, Physica C 218, 295 (1993).

    Article  ADS  Google Scholar 

  44. A. Steegmans, R. Provoost, V.V. Moshchalkov, H. Frank, G. Güntherodt and R.E. Silverans, NMR decoration study of the mixed state in high-T c cuprates, Physica C 259, 245 (1996).

    Article  ADS  Google Scholar 

  45. E.H. Brandt, Flux distribution and penetration depth measured by muon spin rotation in high-T c superconductors, Phys. Rev. B 37, 2349 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  46. W. Barford and J.M.F. Gunn, The theory of the measurement of the London penetration depth in uniaxial type II superconductors by muon spin rotation, Physica C 156, 515 (1988).

    Article  ADS  Google Scholar 

  47. C. Bernhard, Ch. Niedermayer, U. Binninger, A. Hofer, Ch. Wenger, J.L. Tallon, G.V.M. Williams, E.J. Ansaldo, J.I. Budnick, C.E. Stronach, D.R. Noakes, and M.A. Blankson-Mills, Magnetic penetration depth and condensate density of cuprate high-T c superconductors determined by muon-spin-rotation experiments, Phys. Rev. B 52, 10488 (1995).

    Article  ADS  Google Scholar 

  48. Y.J. Uemura et al., Systematic variation of magnetic-field penetration depth in high-T c superconductors studied by muon-spin relaxation, Phys. Rev. B 38, 909 (1988).

    Article  ADS  Google Scholar 

  49. Y.J. Uemura et al., Universal correlations between T c and n s/m * in high-T c cuprate superconductors, Phys. Rev. Lett. 62, 2317 (1989).

    Article  ADS  Google Scholar 

  50. Y.J. Uemura et at., Basic similarities among cuprate, bismuthate, organic, Chevrel-phae, and heavy-Fermion superconductors shown by penetration-depth measurements, Phys. Rev. Lett. 66, 2665 (1991).

    Article  ADS  Google Scholar 

  51. E.J. Nicol and J.P. Carbotte, Penetration depth in phenomenological marginal-Fermi-liquid model for CuO, Phys. Rev. B 43, 1158 (1991).

    Article  ADS  Google Scholar 

  52. M.E. Reeves, D.A. Ditmars, S.A. Wolf, T.A. Vanderah, and V.Z. Kresin, Evidence for strong electron-phonon coupling from the specific heat of YBa 2 Cu 3 O 7-δ Phys. Rev. B 47, 6065 (1993).

    Article  ADS  Google Scholar 

  53. A.M. Neminsky and P.N. Nikolaev, Temperature dependence of anisotropic penetration depth in YBa 2 Cu 3 O 7 measured on aligned fine powder, Physica C 212, 389 (1993).

    Article  ADS  Google Scholar 

  54. D. Pines, in the proceedings of this NATO/ASI in Cargese, September 1–13, 1997, Plenum Press; B. Batlogg, idem.

    Google Scholar 

  55. B. Janossy, D. Prost, S. Pekker, and L. Fruchter, Magnetic study of oxygen-deficient YBa 2 Cu 3 O 7-δ Physica C 181, 51 (1991).

    Article  ADS  Google Scholar 

  56. C. Jiang and J.P. Carbotte, Penetration depth in layered high-T c superconductors, Phys. Rev. B 45, 10670 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Moshchalkov, V.V., Wuyts, B., Steegmans, A., Provoost, R., Silverans, R.E., Bruynseraede, Y. (2002). Scaling Behavior of the Normal State Properties and the Superfluid Density in Metallic YBa 2 Cu 3 O x Cuprates. In: Bok, J., Deutscher, G., Pavuna, D., Wolf, S.A. (eds) The Gap Symmetry and Fluctuations in High-Tc Superconductors. NATO Science Series: B:, vol 371. Springer, Boston, MA. https://doi.org/10.1007/0-306-47081-0_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47081-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45934-4

  • Online ISBN: 978-0-306-47081-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics