Skip to main content

Part of the book series: NATO Science Series: B: ((NSSB,volume 371))

Conclusion

The idea that superconducting cuprates are doped Mott insulator first proposed by Anderson permits to explain many unusual properties of the metallic phase. The discrepancy sometimes obtained or the lack of explanation mainly rely on the absence of exact theory of the Mott transition obtained by doping. Even the qualitative physical picture is not completely set up. We propose a model of “excitonic” metal where the range of energy in which the Fermi liquid theory holds shrinks near the transition. Excitonic superconductivity could explain the unusual superconducting properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For this review, see N.F. Mott, Metal-Insulator transitions edited by Taylor and Francis (1974).

    Google Scholar 

  2. The main papers in the subject are published in a reprint volume The Hubbard Model edited by A. Montorsi, World Scientific (1992). For a review see also M. Cyrot, Physica 91B 141 (1977).

    Google Scholar 

  3. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963), A 281, 401 (1964).

    Article  ADS  Google Scholar 

  4. M. Cyrot, Phys. Rev. Lett. 25, 871 (1970).

    Article  ADS  Google Scholar 

  5. M. Cyrot, J. de Physique 33, 125 (1972).

    Article  Google Scholar 

  6. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963). Phys. Rev. A 134, 923 (1964).

    Article  ADS  Google Scholar 

  7. W.F. Brinkman and T.M. Rice, Phys. Rev B2, 4302 (1970).

    ADS  Google Scholar 

  8. L.D. Landau, Sov. Phys. JETP 3, 920 (1957), 5, 101 (1957).

    MATH  Google Scholar 

  9. For a study of the relation between Gutzwiller approximation and Fermi liquid theory see D. Volhardt, Rev. Mod. Phys. 56, 99 (1984) and Ph. Nozières, Lectures notes at College de France (1986) unpublished.

    Article  ADS  Google Scholar 

  10. W. Metzner and D. Volhardt, Phys. Rev. Lett. 62, 324 (1989). For a review see D. Vollhardt, Physica B, 169, 277 (1991) and E. Muller-Hartmann, Int. J. of Mod. Physic 3, 2169 (1989).

    Article  ADS  Google Scholar 

  11. A. Georges and W. Krauth, Phys. Rev. Lett. 69, 1240 (1992).

    Article  ADS  Google Scholar 

  12. X.Y. Zhang, M.J. Rozenberg and G. Kotliar, Phys. Rev. Lett. 70, 1666 (1993).

    Article  ADS  Google Scholar 

  13. For a review see E. Dagotto, Rev. Mod. Phys. 66, 763 (1994). N. Bulut and D.J. Scalapino, J. Phys. Chem. Solids, 56, 1597 (1995).

    Article  ADS  Google Scholar 

  14. M. Cyrot and C. Lyon-Caen, J. Phys. (Paris) 36, 253 (1974). J.L. Garcia-Munoz, J. Rodriguez-Carvagal and P. Lacorre, Europhys. Lett. 20, 241 (1992).

    Google Scholar 

  15. J. Zaanen, G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett. 52, 418 (1985).

    Article  ADS  Google Scholar 

  16. Y. Tokura et al, Phys. Rev. Lett. 70, 2116 (1993).

    Article  ADS  Google Scholar 

  17. Y. Taguchi, Y. Tokura, T. Arima and F. Inaba, Phys. Rev. B 48, 511 (1993).

    Article  ADS  Google Scholar 

  18. K. Kumagai et al, Phys. Rev. B 48, 7636 (1993).

    Article  ADS  Google Scholar 

  19. S.A. Carter et al, Phys. Rev. B, 48, 16841 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Fujimori et al, Phys. Rev. Lett. 69, 1796 (1992).

    Article  ADS  Google Scholar 

  21. K. Morikawa et al, Phys. Rev. B 54, 8446 (1996).

    Article  ADS  Google Scholar 

  22. A. Fujimori et al, Phys. Rev. B 46, 9841 (1992).

    Article  ADS  Google Scholar 

  23. H. Eskes, M.B.J. Meinders and G.A. Sawatzky, Phys. Rev. Lett. 67, 1035 (1991).

    Article  ADS  Google Scholar 

  24. For a review see Tanner and Timusk (1992).

    Google Scholar 

  25. S. Uchida et al, Phys. Rev. B 43, 7942 (1991).

    Article  ADS  Google Scholar 

  26. Y. Taguchi, Y. Tokura, T. Arima and F. Inaba. to be published.

    Google Scholar 

  27. M.J. Rozenberg et al, Phys. Rev. Lett. 75, 105 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Dagotto, Review of Mod. Phys. 66, 763 (1994).

    Article  ADS  Google Scholar 

  29. L.D. Rotter et al, Phys. Rev. Lett. 67, 2741 (1991).

    Article  ADS  Google Scholar 

  30. For a review see S. Sugay in Mechanism of HTS, H. Kemimura and A. Oshiyama, Editors Springer Verlag (1989).

    Google Scholar 

  31. A. A. Abrikosov and L.A. Falkovskii, Soviet Phys. JETP 13, 179 (1961). L.A. Falkovskii, Sov. Phys. JETP 68, 661 (1989). A. Zuwakowski and M. Cardona, PR B 42, 10732 (1990).

    Google Scholar 

  32. M. Cyrot, Sol. State Comm. 97, 639 (1996).

    Article  ADS  Google Scholar 

  33. Y. Yamada et al, Prog. Theoret. Phys. 70, 73 (1983).

    Article  ADS  Google Scholar 

  34. U. Muschelknautz and M. Cyrot, Phys. Rev. B 54, 4316 (1996).

    Article  ADS  Google Scholar 

  35. M. Cyrot, Modern Physic Letters B 6, 383 (1992).

    Article  ADS  Google Scholar 

  36. D. Allender, J. Bray, J. Bardeen, Phys. Rev. B 7, 1020 (1973).

    Article  ADS  Google Scholar 

  37. D.J. Thouless, Phys. Rev. 117, 1256 (1960).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cyrot, M. (2002). Mott Metal-Insulator Transition in Oxides. In: Bok, J., Deutscher, G., Pavuna, D., Wolf, S.A. (eds) The Gap Symmetry and Fluctuations in High-Tc Superconductors. NATO Science Series: B:, vol 371. Springer, Boston, MA. https://doi.org/10.1007/0-306-47081-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47081-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45934-4

  • Online ISBN: 978-0-306-47081-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics