Skip to main content

Multilayering Effects on the Thermal Fluctuations of Cooper Pairs Around the Superconducting Transition in Cuprates

  • Chapter
The Gap Symmetry and Fluctuations in High-Tc Superconductors

Part of the book series: NATO Science Series: B: ((NSSB,volume 371))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.G. Bednorz and K.A. Müller, Z. Phys. B Condensed Matter 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. See, e.g., M. Tinkham, Introduction to Superconductivity, (McGraw-Hill, New York, 1996), Chaps. 8 and 9, and references therein.

    Google Scholar 

  3. For earlier references of the effects of thermal fluctuations of Cooper pairs in HTSC, see, e.g., M. Akinaga, in Studies of High Temperature Superconductors, edited by A.V. Narlikar (Nova Science, Commack, NY, 1991), Vol. 8, p. 297. For more recent references, mainly on the fluctuation effects on the heat capacity, see, e.g., A. Junod, ibid. (1996), Vol. 19, p. 1. See also, M. Ausloos, in Physics and Material Science of High Temperature Superconductors II, edited by R. Kossowsky, B. Raveau, D. Wohlleben and S.K. Patapis (Kluwer, Dordrecht, 1992), p. 775.

    Google Scholar 

  4. For a review and earlier references on the effects of thermal fluctuations of magnetic vortices in HTSC, see e.g., D. Feinberg, J. Phys. III France 4, 169 (1994).

    Article  Google Scholar 

  5. D.S. Fisher, M.P.A. Fisher and D.A. Huse, Phys. Rev. B 43, 130 (1991).

    Article  ADS  Google Scholar 

  6. For a recent review of the theoretical results on the non-direct (i.e., Maki-Thompson or density of states) effects associated with the Cooper pair fluctuations in single layered superconductors, see e.g., A.A. Varlamov, G. Balestrino, E. Milani and D. Livanov (to be published).

    Google Scholar 

  7. A discussion of the similarities between the thermal fluctuation effects in HTSC and in other layered superconductors may be seen in R.A. Klemm, in Fluctuation Phenomena in High Temperature Ceramics, edited by M. Ausloos and A.A. Varlamov (Kluwer, NATO Series, 1997), in press.

    Google Scholar 

  8. M. Tinkham in Ref.[2], p. 325.

    Google Scholar 

  9. S.K. Yip, Phys. Rev. B 41, 2612 (1990), and references therein.

    Article  ADS  Google Scholar 

  10. J.A. Veira and F. Vidal, Phys. Rev. B 42, R8748 (1990).

    Article  ADS  Google Scholar 

  11. M.V. Ramallo, A. Pomar and F. Vidal, Phys. Rev. B 54, 4341 (1996).

    Article  ADS  Google Scholar 

  12. See, e.g., V.V. Dorin, R.A. Klemm, A.A. Varlamov, A.I. Buzdin and D.V. Livanov, Phys. Rev. B 48, 12951 (1993).

    Article  ADS  Google Scholar 

  13. W.E. Lawrence and S. Doniach, in Proc. 12th Int. Conf. on Low-Temperature Physics, Kyoto, Japan, 1970, edited by E. Kanda (Tokyo, Academic, 1971), p. 361.

    Google Scholar 

  14. R.E. Prange, Phys. Rev. B 1, 2349 (1970).

    Article  ADS  Google Scholar 

  15. R.A. Klemm, M.R. Beasley and A. Luter, Phys. Rev. B 8, 5072 (1973).

    Article  ADS  Google Scholar 

  16. L.N. Bulaevskii, M. Ledvij and V.G. Kogan, Phys. Rev. Lett. 68, 3773 (1992).

    Article  ADS  Google Scholar 

  17. V.G. Kogan, M. Ledvij, A. Yu. Simonov, J.H. Cho and D.C. Johnston, Phys. Rev. Lett. 70, 1870 (1993).

    Article  ADS  Google Scholar 

  18. Z. Tešanovi, L. Xing, L.N. Bulaevskii, Q. Li and M. Suenaga, Phys. Rev. Lett. 69, 3563 (1992).

    Article  ADS  Google Scholar 

  19. K. Maki and R.S. Thompson, Phys. Rev. B 39, 2769 (1989).

    ADS  Google Scholar 

  20. R.A. Klemm, Phys. Rev. B 41, 2073 (1990).

    Article  ADS  Google Scholar 

  21. M.V. Ramallo, C. Torrón and F. Vidal, Physica C 230, 97 (1994).

    Article  ADS  Google Scholar 

  22. J. Mosqueira, E.G. Miramontes, C, Torrón, J.A. Campá, I. Rasines and F. Vidal, Phys. Rev. B 53, 15272 (1996).

    Article  ADS  Google Scholar 

  23. J. Mosqueira, A. Maignan, Ch. Simon, C. Torrón, A. Wahl and F. Vidal, Physica C 282-287, 1539 (1997); F. Vidal, J.A. Veira, C. Torrón, J. Mosqueira, A. Revcolevschi, 1. Rasines, A. Maignan and J.A. Campá, to be published.

    Article  ADS  Google Scholar 

  24. M.V. Ramallo, Ph. D. Thesis (Universidad de Santiago de Compostela, 1997), unpublished.

    Google Scholar 

  25. M.V. Ramallo and F. Vidal, to be published.

    Google Scholar 

  26. S. Hikami and A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).

    Article  ADS  Google Scholar 

  27. M.V. Ramallo and F. Vidal, Europhys. Lett. 39, 177 (1997).

    Article  ADS  Google Scholar 

  28. A.P. Levanyuk, Sov. Phys. JETP 36, 571 (1959); V.L. Ginzburg, Sov. Phys. Solid State 2, 1824 (1960).

    MATH  Google Scholar 

  29. L.G. Aslamazov and A.I. Larkin, Phys. Lett. A 26, 238 (1968).

    Article  ADS  Google Scholar 

  30. Y. Matsuda, T. Hirai and S. Komiyama, Solid State Commun. 68, 103 (1988); Y. Matsuda, T. Hirai, S. Komiyama, T. Terashima, Y. Bando, K. Ijima, K. Yamamoto and K. Hirata, Phys. Rev. B 40, 5176 (1989).

    Article  ADS  Google Scholar 

  31. M. Hikita and M. Suzuki, Phys. Rev. B 39, 4756 (1989); 41, 834 (1990).

    Article  ADS  Google Scholar 

  32. G. Weigang and K. Winzer, Z. Phys. B Condensed Matter 77, 11 (1989); G. Kumm and K. Winzer, Physica B 165-166, 1361 (1990); K. Winzer and G. Kumm, Z. Phys. B Condensed Matter 82, 317 (1991).

    Article  ADS  Google Scholar 

  33. K. Semba, T. Ishii and A. Matsuda, Phys. Rev. Lett. 67, 769 (1991).

    Article  ADS  Google Scholar 

  34. N. Overend and M.A. Howson, J. Phys.: Condens. Matter 4, 9615 (1992).

    Article  ADS  Google Scholar 

  35. W. Holm, M. Andersson, Ö. Rapp, M.A. Kulikov and I.N. Makarenko, Phys. Rev. B 48, 4227 (1993).

    Article  ADS  Google Scholar 

  36. A. Pomar, M.V. Ramallo, J. Maza and F. Vidal, Physica C 225, 287 (1994); A. Pomar, Ph. D. Thesis (Universidad de Santiago de Compostela, 1995), unpublished.

    Article  ADS  Google Scholar 

  37. A. Pomar, M.V. Ramallo, J. Mosqueira, C. Torrón and F. Vidal, Phys. Rev. B 54, 7470 (1996); J. Low Temp. Phys. 105, 675 (1996).

    Article  ADS  Google Scholar 

  38. See, e.g., W.J. Skocpol and M. Tinkham, Rep. Prog. Phys. 38, 1094 (1975).

    Article  Google Scholar 

  39. H. Schmidt, Z. Phys. 216, 336 (1968).

    Article  ADS  Google Scholar 

  40. A. Schmid, Phys. Rev. B 180, 527 (1969).

    Article  ADS  Google Scholar 

  41. T. Suzuki, Phys. Lett. A 37, 154 (1971).

    Google Scholar 

  42. K. Yamaji, Phys. Lett. A 38, 43 (1972).

    Article  ADS  Google Scholar 

  43. F. Vidal, C. Torrón, J.A. Veira, F. Miguélez, and J. Maza, J. Phys.: Condens. Matter 3, L5219 (1991); 3, 9257 (1991); C. Torrón, O. Cabeza, J.A. Veira, J. Maza and F. Vidal, J. Phys.: Condens. Matter 4, 4273 (1992).

    Article  ADS  Google Scholar 

  44. D.J. Thouless, Ann. Phys., NY 10, 553 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. R.A. Ferrell, J. Low Temp. Phys. 1, 241 (1969).

    Article  ADS  Google Scholar 

  46. T. Suzuki, J. Low Temp. Phys. 9, 525 (1972).

    Article  ADS  Google Scholar 

  47. K.F. Quader and E. Abrahams, Phys. Rev. B 38, 11977 (1988). Note that this paper contains a (probably typographical) error in the final result.

    Article  ADS  Google Scholar 

  48. L.N. Bulaevskii, Int. J. Mod. Phys. B 4, 1849 (1990).

    Article  ADS  Google Scholar 

  49. See, e.g., C. Marcenat, R. Calemczuk and A. Carrington, in Coherence in High Temperature Superconductors, edited by G. Deutscher and A. Revcolevschi (World Scientific, Singapore 1995), p. 101 and references therein.

    Google Scholar 

  50. See, e.g., S.W. Pierson, Th.M. Katona, Z. Tčanovié, and T.S. Vails, Phys. Rev. B 53, 8638 (1996) and references therein.

    Article  ADS  Google Scholar 

  51. N. Overend, M.A. Howson, I.D. Lawrie, S. Abell, P.J. Hirst, Ch. Changkang, Sh. Chowdhury, J.W. Hodby, S.E. Inderhess and M.B. Salamon, Phys. Rev. B 54, 9499 (1996).

    Article  ADS  Google Scholar 

  52. A. Pomar, A. Díaz, M.V. Ramallo, C. Torrón, J.A. Veira and F. Vidal, Physica C 218, 257 (1993).

    Article  ADS  Google Scholar 

  53. A. Andreone, C. Cantoni, A. Cassinese, A. Di Chiara and R. Vaglio, Phys. Rev. B 56, 7874 (1997).

    Article  ADS  Google Scholar 

  54. S. Kamal, D.A. Bonn, N. Goldenfeld, P.J. Hirschfeld, R. Liang and W.N. Hardy, Phys. Rev. Lett. 73, 1845 (1994); J.C. Booth, D.H. Wu, S.B. Quadri, E.F. Skelton, M.S. Osofsky, A. Pique and S.M. Anlage, Phys. Rev. Lett. 77, 4438 (1996).

    Article  ADS  Google Scholar 

  55. C. Meingast, A. Junod and E. Walker, Physica C 272, 106 (1996).

    Article  ADS  Google Scholar 

  56. As already noted in the works of Levanyuk (Ref. 40) and Ginzburg (Ref. 40), other definitions of T LG are possible, as the ones based on the comparison of various order parameter averages (see also P.C, Hohenberg, in Fluctuations in Superconductors, edited by E.S. Gore and F. Chilton (Stanford Research Institute, Menlo Park, CA 1968) p. 305). However they lead to expressions of ε LG similar to the one resulting from the heat capacity analysis, except for a numerical prefactor. In fact, such a prefactor ambiguity may be seen as a signature of the qualitativeness of any criterion for the crossover between both critical regions (see, e.g., Ref. 5). Let us stress, however, that the definition used here seems to be the more adequate one, as it as based on a physical observable rather than on more indirect considerations (see also V.L. Ginzburg, A. P. Levanyuk and A.A. Sobyanin, Ferroelectrics 73, 171 (1987)). Let us also stress here, however, that the LG criterium is not directly related to the full critical region, which may appear well below ε LG . Instead, it may be seen as an indication that for ε ⪞ ε LG the mean field like approaches plus Gaussian fluctuations could be a reasonable approximation.

    Google Scholar 

  57. L.N. Bulaevskii, V.L. Ginzburg and A.A. Sobyanin, Physica C 152, 378 (1988).

    Article  ADS  Google Scholar 

  58. C. Torrón, A. Díaz, J. Jegoudez, A. Pomar, M.V. Ramallo. A. Revcolevschi, J.A. Veira and F. Vidal, Physica C 212, 440 (1993); C. Torrón, A. Díaz, A. Pomar, J.A. Veira and F. Vidal, Phys. Rev. B 49, 13143(1994).

    Article  ADS  Google Scholar 

  59. M. Roulin, A. Junod and E. Walker, Physica C 260, 257 (1996).

    Article  ADS  Google Scholar 

  60. W. Holm, Yu. Eltsev and O. Rapp, Phys. Rev. B 51, 11992 (1995).

    Article  ADS  Google Scholar 

  61. J.T. Kirn, N. Goldenfeld, J. Giapintzakis and D.M. Ginsberg, Phys. Rev. B 56, 118 (1997).

    Article  ADS  Google Scholar 

  62. C.W. Lee, R.A. Klemm and D.C. Johnston, Phys. Rev. Lett. 63, 1012 (1989).

    Article  ADS  Google Scholar 

  63. S.E. Inderhess, M.B. Salamon, J.P. Rice and D.M. Ginsberg, Phys. Rev. Lett. 66, 232 (1991).

    Article  ADS  Google Scholar 

  64. An effective medium approach well adapted to the analysis of the influence on the electrical conductivity and magnetoconductivity of T c inhomogeneities at long length scales and uniformly distributed was proposed by J. Maza and F. Vidal, Phys. Rev. B 43, 10560 (1991). See also Ref.37.

    Article  ADS  Google Scholar 

  65. The influence of T c inhomogeneities at long length scales and non-uniformly distributed, including the so-called anomalous peaks, on the magnetoresistivity and on the thermopower around the average T c in HTSC, has been studied by J. Mosqueira, A. Pomar, J.A. Veira and F. Vidal, Physica C 225, 34 (1994); ibid 229, 301 (1994); ibid 253, 1 (1995); J. Appl. Phys. 76, 1943(1994).

    Article  ADS  Google Scholar 

  66. The presence of T c inhomogeneities non-uniformly distributed in the sample surface may deeply affect the current density distributions, mainly around the average T c .See, e.g., Th. Siebold, C. Carballeira, J. Mosqueira, M.V. Ramallo and F. Vidal, Physica C 282-287, 1181 (1997). In turn, these temperature dependent current redisiributios may affect the measured critical exponents of both the paraconductivity and the fluctuation induced magnetoconductivity (see also Ref.65).

    Article  ADS  Google Scholar 

  67. F. Sharifi, J. Giapintzakis, D.M. Ginsberg and D.J. van Harlingen, Physica C 161, 555 (1989).

    Article  ADS  Google Scholar 

  68. P.P. Freitas, C.C. Tsuei and T.S. Plaskett, Phys. Rev. B 36, 833 (1987); R. Hopfengärtner, B. Hensel and G. Saemann-Ischenko, Phys. Rev. B 44, 741 (1991).

    Article  ADS  Google Scholar 

  69. A. Gauzzi and D. Pavuna, Phys. Rev. B 51, 15420 (1995).

    Article  ADS  Google Scholar 

  70. M.R. Cimberle, C. Ferdeghini, E. Giannini, D. Demarré, M. Putti, A. Siri, F. Federici and A. Varlamov, Phys. Rev. B 55, R14745 (1997).

    Article  ADS  Google Scholar 

  71. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1963); 11, 104 (1963).

    Article  ADS  Google Scholar 

  72. P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).

    Article  ADS  Google Scholar 

  73. K.K. Likharev, Rev. Mod. Phys. 51, 101 (1979). In this review numerous cases for tunnelling interactions are considered, all of them leading to the relationship j c ά B -1.

    Article  ADS  Google Scholar 

  74. L.C. Smedskjaer, J.Z. Liu, R. Benedek, D. Leguini, D.J. Laur, M.D. Stahulak, H. Claus, A. Bausil, Physica C 156, 269 (1988).

    Article  ADS  Google Scholar 

  75. R. Kleiner, F. Stenmeier, G. Kunkel and P. Müller, Phys. Rev. Lett. 68, 2394 (1992).

    Article  ADS  Google Scholar 

  76. R. Kleiner and P. Müller, Phys. Rev. B 49, 1327 (1994).

    Article  ADS  Google Scholar 

  77. D.C. Ling, G. Yong, J.T. Chen and L.E. Wenger, Phys. Rev. Lett. 75, 2011 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vidal, F., Ramallo, M.V. (2002). Multilayering Effects on the Thermal Fluctuations of Cooper Pairs Around the Superconducting Transition in Cuprates. In: Bok, J., Deutscher, G., Pavuna, D., Wolf, S.A. (eds) The Gap Symmetry and Fluctuations in High-Tc Superconductors. NATO Science Series: B:, vol 371. Springer, Boston, MA. https://doi.org/10.1007/0-306-47081-0_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-47081-0_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45934-4

  • Online ISBN: 978-0-306-47081-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics