Skip to main content

Temporal and Spatial Solitons: An Overview

  • Chapter
Beam Shaping and Control with Nonlinear Optics

Part of the book series: NATO Science Series: B: ((NSSB,volume 369))

Abstract

This chapter contains a fundamental review of envelope temporal and spatial solitons. A substantial effort has been made to give an account of both the historical background and the physical concepts. Mathematical detail is given to justify the generic nonlinear equations and guide to the inverse scattering method is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Russell, Report on waves, Proc. Roy. Soc. Edinburgh, 319–320, (1844).

    Google Scholar 

  2. P.G. Drazin and R.S. Johnson, Solitons: an introduction, Cambridge University Press, Cambridge (1983).

    Google Scholar 

  3. G.B. Airy, Tides and Waves, Encyc. Metrop., Fellowes, London (1845).

    Google Scholar 

  4. G.G. Stokes, On the theory of oscillatory waves, Camb. Trans. 8, 441–473, (1847).

    Google Scholar 

  5. J. Boussinesq, Théorie de l’intumescence liquid appelée onde solitaire ou de translation, ce propageant dans un canal rectangulaire, Comptes Rendus Acad Sci (Paris), 72, 755–778, (1871).

    MATH  Google Scholar 

  6. Lord Rayleigh, On waves, Phil. Mag. 1, 257–279, (1876).

    Google Scholar 

  7. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Phil. Mag. 39, 422–443, (1895).

    Google Scholar 

  8. N. Zubusky, and M. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys Rev Lett 15, 240–243, (1965).

    Google Scholar 

  9. M. Remoissenet, Waves Called Solitons, Springer-Verlag, Berlin (1995).

    Google Scholar 

  10. D.L. Lee, Electromagnetic Properties of Integrated Optics, John Wiley & Sons, New York (1986).

    Google Scholar 

  11. A.C. Scott, F.Y.F. Chu and D.W. McLoughlin, The soliton: a new concept in applied science, Proc. IEEE 61, 1443–1483, (1973).

    MathSciNet  Google Scholar 

  12. B.M. Oliver, Bell Telephone Laboratories Technical Memorandum MM-51-150-10, Case 33089, March 8, (1951). (b) S.C. Bloch, Introduction to chirp concepts with a cheap chirp radar, Am. J. Phys.41, 857–864, (1973).

    Google Scholar 

  13. R. Dawkins, The Blind Watchmaker, Penguin, London (1986).

    Google Scholar 

  14. G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, San Diego (1995).

    Google Scholar 

  15. A.K. Zvezdin and A.F. Popkov, Contribution to the nonlinear theory of magnetostatic spin waves, Sov. Phys. JETP 57, 350–355, (1983).

    Google Scholar 

  16. J. S. Aitchison, Y. Silberberg,, A.M. Weiner, D.E. Leaird, M.K. Oliver, J.L. Jackel, E.M. Vogel and P.W.E. Smith, Spatial optical solitons in planar glass waveguides, J. Opt. Soc. Am. B. Opt. Phys., 8(6), 1290–1297 (1991).

    Google Scholar 

  17. J.S. Aitchison, K. Al-Hemyari, C.N. Ironside, R.S. Grant and W. Sibbett, Observation of spatial solitons in AlGaAs waveguides, Electron Lett., 28, 1879–1880, (1992).

    Google Scholar 

  18. Y. Silberberg, Spatial optical solitons in Optical Solitons, Ed. J Satsuma, Springer-Verlag, Berlin (1992). (b) P.V. Mamyshev, A. Villeneuve, G.I. Stegeman and J.S. Aitchison, Steerable optical waveguides formed by bright spatial solitons, Electronics Letters 30, 726–727, (1994).

    Google Scholar 

  19. A. Villeneuve, J.S. Aitchison, J.U. Kang, P.G. Wigley and G.I. Stegeman, Optics Letters 19, 761–763, (1994).

    Google Scholar 

  20. G.I. Stegeman, A. Villeneuve, J.S. Aitchison and C.N. Ironside, Nonlinear integrated optics and all-optical waveguide switching in semiconductors, Fabrication, Properties and Applications of Low-Dimensional Semiconductors, Ed M Balkanski and I Yanchev, Kluwer Academic Publishers, Netherlands (1995).

    Google Scholar 

  21. A.D. Boardman and K. Xie, Theory of spatial solitons, Radio Science, 28, 891–899, (1993).

    Google Scholar 

  22. A.D. Boardman, K. Kie and A.A. Zharov, Polarisation interaction of spatial solitons in optical planar waveguides, Phys. Rev. A., 51, 692–705, (1995).

    Article  Google Scholar 

  23. A.D. Boardman and K. Xie, Dynamics of spatial soliton coupling. Studies in Classical and Quantum Nonlinear Optics. Ed Ole Keller, 2–30, Nova Press, New York (1995).

    Google Scholar 

  24. A.D. Boardman, K. Xie and A. Sangarpaul, Stability of scalar spatial solitons in cascadable nonlinear media, Phys. Rev. A 52, 4099–4106, (1995).

    Article  Google Scholar 

  25. A.D. Boardman and K. Xie, Magnetic control of optical spatial solitons, Phys. Rev. Letters, 75, 4591–4594, (1995).

    Article  Google Scholar 

  26. A.D. Boardman and K. Xie, Waveguide-based devices: linear and nonlinear coupling, Low-Dimensional Semiconductor Devices, Ed. M. Balkanski, Kluwer Publishers, Amsterdam, (1996).

    Google Scholar 

  27. J. Boyle, S.A. Nikitov, A.D. Boardman, J.G. Booth and K.M. Booth, Nonlinear self-channelling and beam shaping of magnetostatic waves in ferromagnetic films, Phys. Rev. B, 53, 1–9, (1996).

    Article  Google Scholar 

  28. A.D. Boardman and K. Xie, Spatial solitons in χ(2) and χ(3) dielectrics and control by magneto-optic materials. Proceedings of Minnesota International Mathematics Workshop, Springer-Verlag (1997).

    Google Scholar 

  29. Boardman, A.D. and Xie, K. Soliton-based switches, logic gates and transmission systems. Ed. M. Balkanski, Kluwer Publishers, Amsterdam (1997).

    Google Scholar 

  30. S.A. Akhmanov, A.P. Sukhorukov and R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium, Sov. Phys. Usp., Engl. Transl., 93, 609–636, (1968).

    Google Scholar 

  31. M. S. Sodha, A.K. Ghatak and V.K. Tripath, Self-focusing of laser beams, Tata McGraw-Hill, New Delhi (1974).

    Google Scholar 

  32. O. Svelto, Self-focusing, self-trapping and self-phase modulation of laser beams, Progress in Optics, 11, 1–51, (1974).

    Google Scholar 

  33. F.A. Jenkins and H.E. White, Fundamentals of Optics, McGraw-Hill, New York (1950).

    Google Scholar 

  34. A. Barthelemy, S. Maneuf and F. Froehly, Propagation et autoconfinement de faisceaux laser par non-linearite de Kerr, Opt. Comm. 55, 201–206, (1985).

    Google Scholar 

  35. A.D. Boardman, S.A. Nikitov, K. Xie and H.M. Mehta, Bright magnetostatic spin-wave envelope solitons in ferromagnetic films, JMMM, 145, 357–378, (1995).

    Google Scholar 

  36. J.P. Gordon and H.A. Haus, Random walk of coherently amplified solitons in optical fiber transmission, Optics Letters 11, 665–667, (1986).

    Google Scholar 

  37. C.S. Gardner, J.M. Green, M.D. Kruskal and R.M. Miura, Method for solving the Korteweg de Vries equation, Phys. Rev. Lett. 19, 1095–1097, (1967).

    Article  Google Scholar 

  38. V.E. Zakharov and A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34, 62–69, (1972).

    MathSciNet  Google Scholar 

  39. G.L. Lamb, Elements of Soliton Theory, John Wiley & Sons, New York (1980).

    Google Scholar 

  40. A.N. Satsuma and G.M. Dudko, Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media, Prog. Theor. Phys. Suppl. 55, 284–306, (1974).

    Google Scholar 

  41. V.V. Afanasjev, J.S. Aitchison and Y.S. Kivshar, Splitting of high-order spatial solitons under the action of two-photon absorption, Optics Comm, 116, 331–338, (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Boardman, A.D., Bontemps, P., Koutoupes, T., Xie, K. (2002). Temporal and Spatial Solitons: An Overview. In: Kajzar, F., Reinisch, R. (eds) Beam Shaping and Control with Nonlinear Optics. NATO Science Series: B:, vol 369. Springer, Boston, MA. https://doi.org/10.1007/0-306-47079-9_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47079-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45902-3

  • Online ISBN: 978-0-306-47079-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics