Skip to main content

Low-Power Short Wavelength Coherent Sources: Technologies and Applications

  • Chapter
Book cover Beam Shaping and Control with Nonlinear Optics

Part of the book series: NATO Science Series: B: ((NSSB,volume 369))

  • 340 Accesses

Conclusion

In this course we have described the current state of the art concerning three technologies being used to realize low-power coherent short wavelength sources: upconversion fiber lasers, diode lasers, and second harmonic generation. We have also gone at some length into describing three rather original applications for such sources and their technology: a fiber optic temperature sensor based on upconversion, a DNA recognition technique, and a waveguide examination technique, both of thelatter using short wavelength induced fluoresence. We hope to have shown that this is a rapidly evolving field, involving pluridisciplinary interactions, that has led to important results, and will, in the future continue to provide, as it has in the past, pleasant surprises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Snitzer, “Optical maser action of Nd3+ in barium crown glass”, Phys. Rev. Letts. 7, p 444, (1961)

    Article  Google Scholar 

  2. J. R. Armitrage, Optical Fiber Lasers and Amplifiers, ed P.W. France, p 14–49, CRC Press (1991)

    Google Scholar 

  3. N. Bloembergen, Phys. Rev. Letts. 2, 84 (1959)

    Article  Google Scholar 

  4. T. Kushida and M. Tamatani, “Conversion of infrared into visible light”, supplement to J. Japan Soc. Appl. Phys. 39, pp 241–247, (1970), F. Auzel, “Materials and devices using double-pumped phosphors with energy transfer”, Proc. I.E.E.E. 61, pp 758–786, (1973)

    Google Scholar 

  5. F. Auzel, “Compteur quantique par transfert d’énergie entire deux ions de terres rares dans un tungstate mixte et dans un verre”, C.R. Acad. Sci. 262, pp 1016–1019, (1966)

    Google Scholar 

  6. M. Poulai, M. Poulain, and J. Lucas, Mat. Res. Bull. 10, 243 (1975)

    Google Scholar 

  7. Zheng H. and Gan F. Chinese Phys. 6, 978 (1986)

    Google Scholar 

  8. J.Y. Allain, M. Monerie, and H. Poignant, “Room temperature CW tunable green upconversion holmium fibre laser”, Electron. Lett. 26, 261 (1990)

    Google Scholar 

  9. S.G. Grubb, K.W. Bennett, R.S. Cannon and W.F. Humer, CW room-temperature blue upconversion fibre laser”, Electron. Lett. 28, 1243 (1992)

    Google Scholar 

  10. R. Paschetta, N. Moore, W.A. Clarkson, A.C. Tropper, D.C. Hanna, G. Mazé, 230 mWof blue light from thulium:ZBLAN upconversion fiber laser, Proceedings CEO 97 paper CTuG3 p 80 (1997).

    Google Scholar 

  11. S. Sanders, R.G. Waarts, D.G. Mehuys, and F.D. Welch, “Laser diode pumped 106 mW blue upconversion laser”, Apl. Phys. Lett. 67, p 1815, (1995).

    Google Scholar 

  12. R.G. Smart, D.C. Hanna, A.C. Tropper, S.T. Davey, S.F. Carter, and D. Szebesta, Electron. Lett. 27, 1307 (1991).

    Google Scholar 

  13. S.C. Goh, R. Pattie, C. Byrne, and D. Coulson, “Blue and red laser action in Nd3+: Pr3+ co-doped fluorozirconate glass”, Appl. Phys. Lett., 67, 768 (1995).

    Article  Google Scholar 

  14. M.A. Haase, J. Qui, J.M. Depuyt, and H. Cheng, Appl. Phys. Lett. 59, p 1272, 1991

    Google Scholar 

  15. N. Nakayama, et al, Electron. Lett. 2, p. 2194, 1993

    Google Scholar 

  16. S. Tanaguchi, et al, Electron. Lett. 32, 552, 1996

    Google Scholar 

  17. Nakamura, S., et al, InGaN multi-quantum-well structure laser diodes, Jpn. J. Appl. Phys. 35, L74 (1996)

    Google Scholar 

  18. Nakamura, S. Characteristics of InGaN multi-quantum-well structure laser diodes, Mater. Res. Sec. Soc. 449,: 1135 (1996)

    Google Scholar 

  19. J.A. Arrmstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, Interactins between light waves in a nonlinear dielectric, Phys. Rev. 127, 1918 (1962)

    Google Scholar 

  20. E.J. Lim, M.M. Fejer, R.L. Byer, and W.J. Koslovsky, Blue light generation by frequency doubling in a periodically poled lithium niobate channel waveguide, Electron. Lett. 25 pp 731–732 (1989).

    Google Scholar 

  21. J. Webjorn, F. Laurell, and G. Arvidsson, Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide, IEEE Photon. Technol. Lett 1 pp 316–318 (1989)

    Article  Google Scholar 

  22. S. Helmfrid and G. Arvidsson, Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic-generation in quasi-phase-matched waveguides, J. Opt. Soc. Am. B. 8, 797 (1991)

    Google Scholar 

  23. M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, Quasi-phase-matched second harmonic generation tuning and tolerances, IEEE J. Quantum Electron. 28, 2631 (1992)

    Article  Google Scholar 

  24. V.N. Gulgazov, H. Zhao, D. Nam, J.S. Major, and T. Koch, Tunable high-power AlGaAs distributed Bragg reflector laser diodes, Electron. Lett. 33, 58 (1997)

    Article  Google Scholar 

  25. K. Mizuuchi, K. Yamamoto and M. Kato, Harmonic blue light generation in X-cut Mg0:LiNbO3 waveguide, Electron. Lett. 33, 806, (1997)

    Article  Google Scholar 

  26. E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D.B. Ostrowsky, and G.W. Baxter, Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors, Appl. Optics 34, p 8019, (1995)

    Google Scholar 

  27. E. Maurice, G. Monnom, D.B. Ostrowsky, and G.W. Baxter, 1.2-µm transitions in erbium-doped fibers: the possibility of quasi-distributed temperature sensors, Appl. Optics, 34, p 4196, ( 1995)

    Google Scholar 

  28. S. Tyagi and F;R; Kramer, Nature Biotechnol, 14, 303 (1996)

    Google Scholar 

  29. G. Bonnet, S. Tyagi, F.R. Kramer, and A. Libchaber, Molecular beacons for probing information in DNA, to be published

    Google Scholar 

  30. D.B. Ostrowsky and A.M. Roy, Visualisation de la propagation dans un guide d’onde optique par fluorescence anti-Stokes, Revue tech. Thomson-CSF, 6, 973 (1974)

    Google Scholar 

  31. D.B. Ostrowsky, M. Papuchon, A.M. Roy, et J. Trotel, Electron beam fabrication using an electron sensible film, App. Opt. 13, p, 636 (1974).

    Google Scholar 

  32. M. Papuchon, B. Puech, C. Puech, and D.B. Ostrowsky, A movie on the visualization by fluorescence of the electrically controlled directional coupler, Paper Tu A2, Proceedings of the Topical Meeting on Integrated and Guided Wave Optics, Salt Lake City, (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Ostrowsky, D.B. (2002). Low-Power Short Wavelength Coherent Sources: Technologies and Applications. In: Kajzar, F., Reinisch, R. (eds) Beam Shaping and Control with Nonlinear Optics. NATO Science Series: B:, vol 369. Springer, Boston, MA. https://doi.org/10.1007/0-306-47079-9_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47079-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45902-3

  • Online ISBN: 978-0-306-47079-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics