Skip to main content

Nonlinear Optical Frequency Conversion: Material Requirements, Engineered Materials, and Quasi-Phasematching

  • Chapter
Beam Shaping and Control with Nonlinear Optics

Part of the book series: NATO Science Series: B: ((NSSB,volume 369))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Akhmanov, S. A., Kovrygin, A. I., and Sukhorukov, A.P., 1975, Optical Harmonic Generation and Optical Frequency Multipliers, in: Quantum Electronics: A Treatise, H. Rabin and C. L. Tang, eds., Academic Press, New York.

    Google Scholar 

  • Anderson, M.E., Beck, M., Raymer, M.G., and Bierlein, J.D., 1995, Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides, Opt. Lett. 20:620.

    Google Scholar 

  • Angell, M.J., Emerson, R.M., Hoyt, J.L., Gibbons, J.F., Eyres, L.A., Bortz, M.L., and Fejer, M.M., 1994, Growth of alternating (100)/(111)-oriented II-VI regions for quasi-phase-matched nonlinear optical devices on GaAs substrates, Appl. Phys. Lett. 64:3107.

    Article  Google Scholar 

  • Arbore, M.A., Fejer, M.M., Fermann, M.E., Hariharan, A., Galvanauskas, A., and Harter, D., 1997, Frequency doubling of femtosecond erbium-fiber soliton lasers in periodically-poled lithium niobate, Opt. Lett. 22: 13.

    Google Scholar 

  • Arbore, M.A., and Fejer, M.M., 1997b, Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides, Opt. Lett. 22: 151.

    Google Scholar 

  • Arbore, M.A., Galvanauskas, A., Harter, D., Chou, M.H., and Fejer, M.M., 1997c, Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate, Opt. Lett. 22: 1341.

    Google Scholar 

  • Armstrong, J.A., Bloembergen, N., Ducuing, J., and Pershan, P.S., 1962, Interactions between lightwaves in a nonlinear dielectric, Phys. Rev. 127: 1918.

    Article  Google Scholar 

  • Batchko, R.G., Weise, D.R., Plettner, T., Miller, G.D., Fejer, M.M., and Byer, R.L., 1997, 532 nm-pumped continuous-wave singly resonant optical parametric oscillator based on periodically-poled lithium niobate, in: OSA Trends in Optics and Photonics Series. Vol. 10 Advanced Solid State Lasers., Pollock, C.R., and Bosenberg, W.R., eds., p 182–4, Opt. Soc. Am., Washington, D.C.

    Google Scholar 

  • Beausoleil, R., 1992, Highly efficient second harmonic generation, Lasers and Optronics, 11: 17.

    Google Scholar 

  • Bordui, P.F., and Fejer, M.M., 1993, Inorganic crystals for nonlinear optical frequency conversion, Annu. Rev. Mat. Sci. 23:321.

    Google Scholar 

  • Bortz, M.L., Field, S.J., Fejer, M.M., Nam, D.W., Waarts, R.G., and Welch, D.W., 1994, Noncritical quasiphase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide, IEEE J. Quantum Electron. 30:2953.

    Article  Google Scholar 

  • Bortz, M.L., Arbore, M.A., and Fejer, M.M., 1995, Quasi-phasematched optical parametric amplification and oscillation in periodically-poled lithium niobate waveguides, Opt. Lett, 20:49.

    Google Scholar 

  • Bosenberg, W.R., Drobshoff, A., Alexander, J.I., Myers, L.E., and Byer, R.L., 1996, 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator, Opt. Lett. 21: 1336.

    Google Scholar 

  • Boyd, G.D., and Kleinman, D.A., 1968, Parametric interaction of focused Gaussian light beams, J. Appl. Phys. 39:3597.

    Google Scholar 

  • Brosnan S., and Byer. R.L., 1979, Optical parametric oscillator threshold and linewidth studies, IEEE J. Quantum Electron., 15:415.

    Article  Google Scholar 

  • Butterworth, S.D., Pruneri, V., and Hanna, D.C., 1996, Optical parametric oscillation in periodically poled lithium niobate based on continuous-wave synchronous pumping at 1.047 µm, Opt. Lett. 21: 1345.

    Google Scholar 

  • Burr, K.C., Tang, C.L., Arbore, M.A., and Fejer, M.M., 1997, High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate, Appl. Phys. Lett. 70:3341.

    Article  Google Scholar 

  • Byer, R.L., 1975, Optical parametric oscillators, in: Quantum Electronics: A Treatise, H. Rabin and C.L. Tang, eds. Academic Press, New York.

    Google Scholar 

  • Byer, R.L., 1977, Parametric oscillators and nonlinear materials, in Nonliner Optics, P.G. Harper and B.S. Wherret, eds., Academic Press, San Francisco.

    Google Scholar 

  • Byer, R.L., and Piskarskas, A., eds., 1993, Special Issue on Optical Parametric Oscillation and Amplification, J. Opt. Sci. Am. B 10(9) and 10 (11).

    Google Scholar 

  • Chemla, D.S., and Zyss. J., 1987, Nonlinear Properties of Organic Molecules and Crystals, pp. 42–43, Academic Press, Orlando.

    Google Scholar 

  • Chen, C.-T., Wu, Y.-C., and Li, R.-K., 1985, The relationship between the structural type of the anionic group and SHG effect in boron-oxygen compounds, Chinese Phys. Lett., 2: 389.

    Google Scholar 

  • Chen, Q., and Risk, W., 1994, Periodic poling of KTiOPO4 using an applied electric field, Electron. Lett. 30:1516.

    Google Scholar 

  • Chen, Q., and Risk, W., 1996, High efficiency quasi-phasematched frequency doubling waveguides in KTiOPO4 fabricated by electric field poling, Elect. Lett. 32: 107.

    Google Scholar 

  • Dmitriev, V.G., Gurzadyan, G.G., and Nikogosyan, D.N., Handbook of Nonliner Optical Crystals, 2nd ed., Springer-Verlag, Berlin (1997).

    Google Scholar 

  • Eimerl, D., 1987, High average power harmonic generation, IEEE J. Quantum Electron. QE-23:575.

    Google Scholar 

  • Fejer, M.M., Magel, G.A., Jundt, D.H., and Byer, R.L., 1992b, Quasi-phasematched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron. 28:2631.

    Article  Google Scholar 

  • Fejer, M.M., 1992, Nonlinear frequency conversion in periodically-poled ferroelectric waveguides, in: Guided Wave Nonlinear Optics, D.B. Ostrowsky and R. Reinisch, eds., Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Fiore, A., Berger, V., Rosencher, E., Laurent, N., Theilmann, S., Vodjdani, N., Nagle, J., 1996, Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides, Appl. Phys. Lett. 68:1320.

    Article  Google Scholar 

  • Franken, P.A., Hill, A.E., Peters, C.W., and Weinreich, G., 1961, Generation of optical harmonics, Phys. Rev. Lett. 7:118.

    Article  Google Scholar 

  • Galvanauskas, A., Arbore, M.A., Fejer, M.M., Fermann, M.E., and Harter, D., 1996, Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3, Opt. Lett. 22:105.

    Google Scholar 

  • Gettemy, D.J., Harker, W.C., Lindholm, G., and Barnes, N.P., 1988, Some optical properties of KTP, LiIO3, and LiNbO3. IEEE J, Quantum Electron. 24:2231.

    Article  Google Scholar 

  • Giordmaine, J.A. 1962, Mixing of light beams in crystals, Phys. Rev. Lett. 8:19.

    Article  Google Scholar 

  • Goldberg, L., McElhanon, R.W., and Burns, W.K., 1995, Blue light generation in bulk periodically field poled LiNbO3, Electron. Lett. 31:1576.

    Article  Google Scholar 

  • Harada, A., and Nihei, Y., 1996, Bulk periodically poled MgO-LiNbO3 by corona discharge method, Appl. Phys. Lett. 69:2629.

    Google Scholar 

  • Jundt, D. H., Magel, G.A., Fejer, M.M., and Byer, R.L., 1991, Periodically poled lithium niobate for high efficiency second-harmonic generation, Appl. Phys. Lett. 59:2657.

    Article  Google Scholar 

  • Kazansky, P.G., Russell, P.St.J., and Takebe, H., 1997, Glass fiber poling and applications, J. Lightwave Technol. 15:1484.

    Article  Google Scholar 

  • Kintaka, K., Fujimura, M., Suhara, T., Nishihara, H., 1996, High-efficiency LiNbO3waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage, J. Lightwave Technol. 14:462.

    Article  Google Scholar 

  • Kitaoka, Y., Mizuuchi, K., Yamamoto, K., Kato, M., 1995, An SHG blue-light source using domain inverted LiTaO3, Review of Laser Engineering 23:788.

    Google Scholar 

  • Kozlovsky, W.J., Nabors, C.D., and Byer, R.L., 1988, Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO3 external resonant cavities, IEEE J. Quantum Electron. 26:135.

    Google Scholar 

  • Kurtz, SK., 1975, Measurement of nonlinear optical susceptibilities, in: Quantum Electronics: A Treatise, Rabin, H., and Tang, C.L., eds., Academic Press, New York (1975).

    Google Scholar 

  • Lim, E.J., Fejer, M.M., and Byer, R.L., 1989, Second harmonic generation of green light in a periodically-poled lithium niobate waveguide, Electron. Lett. 25:174.

    Google Scholar 

  • Lines, M.E., and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1997).

    Google Scholar 

  • Lovering, D.J., Levenson, J.A., Vidakovic, P., Webjorn, J., and Russell, P.St.J., 1996, Noiseless optical amplification in quasi-phase-matched bulk lithium niobate, Opt. Lett. 21:1439.

    Google Scholar 

  • Maker, P.D., Terhume, R.W., Nisenoff, M., and Savage, C.M., 1962, Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Lett. 8:21.

    Article  Google Scholar 

  • Meyn, J.P., and Fejer, M.M., 1997, Tunable ultraviolet radiation by second-harmonic generation in periodically-poled lithium tantalate, Opt. Lett. 22:1214.

    Google Scholar 

  • Miller, G.D., Batchko, R.G., Fejer, M.M., and Byer, R.L., 1996, Visible quasi-phasematched harmonic generation by electric-field-poled lithium niobate, in SPIE Proceedings on Nonlinear Frequency Generation and Conversion, 2700:34.

    Google Scholar 

  • Miller, G.D., Batchko, R.G., Tulloch, W.M., Weise, D.R., Fejer, M.M., and Byer, R.L., 1997, 42% efficient single-pass second harmonic generation of a continuous-wave Nd:YAG laser output in a 5.3 cm length periodically-poled lithium niobate crystal, presented at the OSA Topical Meeting on Advanced Solid State Lasers, Orlando, FL, Jan. 1997.

    Google Scholar 

  • Miller, R.C. 1964, Optical harmonic generation in BaTiO3 single crystal, Phys. Rev. 134:A1313.

    Article  Google Scholar 

  • Mizuuchi, M., Yamamoto, K., and Taniuchi, T., 1991. Second harmonic generation of blue light in LiTaO3 waveguides, Appl. Phys. Lett. 58:2732.

    Article  Google Scholar 

  • Mizuuchi, K., Yamamoto, K., and Kato, M., 1997, Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3, Appl. Phys. Lett. 70:1201.

    Article  Google Scholar 

  • Mizuuchi, K., Ohta, H., Yamamoto, K., and Kato, M., 1997b, Second-harmonic generation with a high-index-clad waveguide, Opt. Lett. 22:1217.

    Google Scholar 

  • Mizuuchi, K., Yamamoto, K., and Kato, M., 1997c, Harmonic blue light generation in X-cut MgO:LiNbO3 waveguide, Electron. Lett. 33:806.

    Article  Google Scholar 

  • Myers, L.E., Miller, G.D., Eckardt, R.C., Fejer, M.M., Byer, R.L., and Bosenberg, W.R., 1995, Quasiphasematched 1.064-µm-pumped optical parametric oscillator in bulk periodically-poled lithium niobate, Opt. Lett. 20:52.

    Google Scholar 

  • Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., Bosenberg, W.R., and Pierce, J.W., 1995b, Quasi-phase-matched optical parametric oscillators in bulk periodically-poled LiNbO3,J. Opt. Sci. Am. 12:2102.

    Google Scholar 

  • Myers, L.E., Eckardt, R.C., Fejer, M.M., Byer, R.L., and Bosenberg, W.R., 1996, Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Opt. Lett. 214:591.

    Google Scholar 

  • Okada, M., and Ieiri, S., 1971, Influences of self-induced thermal effects on phase matching in nonlinear optical crystals, IEEE J. Quantum Electron. 7:560.

    Google Scholar 

  • Pollock, C.R., and Bosenberg, W.R. eds., OSA Trends in Optics and Photonics on Advanced Solid State Lasers. From the Topical Meeting, Opt. Soc. America, Washington (1997).

    Google Scholar 

  • Pruneri, V., Koch, R., Kazansky, P.G., Clarkson, W.A., Russell, P.S.J., and Hanna, D.C., 1995, 49 mW of CW blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser, Opt. Lett. 23:2375.

    Google Scholar 

  • Pruneri, V., Webjorn, J., Russell, P.S.J., and Hanna, D.C., 1995b, 532 nm pumped optical parametric oscillator in bulk periodically poled lithium niobate, Appl. Phys. Lett. 67:2126.

    Google Scholar 

  • Pruneri, V., Butterworth, S.D., and Hanna, DC., 1996, Highly efficient green-light generation by quasi-phase-matched frequency doubling of picosecond pulses from an amplified mode-locked Nd:YLF laser, Opt. Lett. 21:390.

    Google Scholar 

  • Pruneri, V., Koch, R., Kazansky, P.G., Clarkson, W.A., Russell, P.S.J., and Hanna, D.C., 1996b, Highly efficient CW blue light generation via first-order quasi-phase-matched frequency doubling of a diode-pumped 946 Nd:YAG laser, OSA Trends in Optics and Photonics on Advanced Solid State Lasers. Vol. 1. From the Topical Meeting, Payne, S.A. and Pollock, C.R. eds., Opt. Soc.America, Washington.

    Google Scholar 

  • Reid, D.T., Penman, Z., Ebrahimzadeh, M., Sibbett, W., Karlsson, H., and Laurell, F., 1997, Broadly tunable infrared femtosecond optical oscillator based on periodically poled RbTiOAsO4, Opt. Lett. 22:1397.

    Google Scholar 

  • Roberts, D.A., 1992, Simplified characterization of uniaxial and biaxial nonlinear optical crystals: a plea for standardization of nomenclature, IEEE J. Quantum Electron. 28:2057.

    Article  Google Scholar 

  • Schiller, S., Principles and applications of otpical monolithic total-internal-reflection resonators, Ph.D. dissertation, Stanford University (1993).

    Google Scholar 

  • Serkland, D.K., Fejer, M.M., Byer, R.L., and Yamamoto, Y., 1995, Squeezing in a quasi-phase-matched LiNbO3 waveguide, Opt. Lett. 20:1649.

    Google Scholar 

  • Shen, Y.R., The Pinciples of Nonlinear Optics, John Wiley, New York (1984).

    Google Scholar 

  • Stegeman, G. and Seaton, C., 1985, Nonlinear integrated optics, J. Appl. Phys. 58:R57.

    Article  Google Scholar 

  • Stein, A, 1974, Thermooptically perturbed resonators, IEEE J. Quantum Electron. 10:427.

    Article  Google Scholar 

  • Sturman, B., Aguilar, M., Agullo-Lopez, E., Pruneri, V., and Kazansky, P.G., 1997, Photorefractive nonlinearity of periodically poled ferroelectrics, J. Opt. Sci. Am. B 14:2641.

    Google Scholar 

  • Tang, C.L., Bosenberger, W.L., Ukachi, T., Lane, R.J., and Cheng, L.K., Optical parametric oscillators, Proc. IEEE 80:365.

    Google Scholar 

  • Taya, M., Bashaw, M.C., and Fejer, M.M., 1996, Photorefractive effects in periodically poled ferroelectrics, Opt. Lett. 21:5857.

    Google Scholar 

  • van der Poel, C.J., Bierlein, J.D., Brown, J.B., and Colak, S., 1990, Efficient type I blue second harmonic generation in periodically segmented KTiOPO4 waveguides, Appl. Phys. Lett. 57:2074.

    Google Scholar 

  • Webjorn, J., Laurell, F., and Arvidsson, G., 1989, Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation, J. Lightwave Technol. 7:1597.

    Article  Google Scholar 

  • Webjorn, J., Siala, S., Nam, D.W., Waarts, R.G., and Lang, R.J, 1997, Visible laser sources based on frequency doubling in nonlinear waveguides, IEEE J. Quantum Electron. 33:1673.

    Article  Google Scholar 

  • Webjorn, J., 1997b, personal communication.

    Google Scholar 

  • Wirges, W., Yilmaz, S., Brinker, W., Bauer-Gogonea, S., Bauer, S., Jager, M., Stegeman, G.I., Ahlheim, M., Stahelin, M., Zysset, B., Lehr, F., Diemeer, M., and Flipse, M.C., 1997, Polymer waveguides with optimized overlap integral for modal dispersion phase-matching, Appl. Phys. Lett. 70:3347.

    Article  Google Scholar 

  • Xu, C.-Q., Okayama, H., Kamijoh, T., 1995, Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched difference frequency generation, Japanese J. Appl. Phys., 34:L1543.

    Article  Google Scholar 

  • Xue, Y.H., Ming, N.B., Zhu, J.S., and Feng, D., 1984, The second harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains, Chinese Phys. 4:554.

    Google Scholar 

  • Yamada, M., Nada, N., Saitoh, M., and Watanabe, K., 1993, First order quasi-phase matched LiNbO3 waveguide periodically-poled by applying an external field for efficient blue second harmonic generation, Appl. Phys. Lett. 62:435.

    Article  Google Scholar 

  • Yamamoto, Y., and Mizuuchi, K., 1992, Blue-light generation by frequency doubling of a laser diode in a periodically domain-inverted LiTaO3 waveguide, IEEE Photon. Technol. Lett. 4:435.

    Google Scholar 

  • Yariv, Amnon, Optical Waves in Crystals, Wiley, New York, (1984).

    Google Scholar 

  • Yi, S.-Y., Shin, S.-Y., Jin, Y.-S., and Son, Y.-S., 1996, Second-harmonic generation in a LiTaO3 domain-inverted by proton exchange and masked heat treatment, Appl. Phys. Lett. 68:2493.

    Google Scholar 

  • Yoo, S.J.B., Caneau, C., Bhat, R., Koza, M.A., Rajhel, A., and Antoniades, N., 1996, Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding, Appl. Phys. Lett. 68:2609.

    Google Scholar 

  • Zernike, F., and Midwinter, J.E., Applied Nonlinear Optics, Wiley, New York (1973).

    Google Scholar 

  • Zheng, D., Gordon, L.A., Wu, Y.S., Route, R.K., Fejer, M.M., Byer, R.L., and Feigelson, R.S., 1997, Diffusion bonding of GaAs wafers for nonlinear optics applications, J. Electrochem. Soc. 144: 1439.

    Google Scholar 

  • Zhu, S.N., Zhu, Y.Y., Zhang, Z.Y., Shu, H., Wang, H.F., Hong, J.F., Ge, C.Z., and Ming, N.B., 1995, LiTaO3 crystal periodically poled by applying an external applied field, J. Appl. Phys. 77:5481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Fejer, M.M. (2002). Nonlinear Optical Frequency Conversion: Material Requirements, Engineered Materials, and Quasi-Phasematching. In: Kajzar, F., Reinisch, R. (eds) Beam Shaping and Control with Nonlinear Optics. NATO Science Series: B:, vol 369. Springer, Boston, MA. https://doi.org/10.1007/0-306-47079-9_13

Download citation

  • DOI: https://doi.org/10.1007/0-306-47079-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45902-3

  • Online ISBN: 978-0-306-47079-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics