Modeling of a Magnetized Plasma: The Stationary Plasma Thruster

Part of the NATO Science Series: B book series (NSSB, volume 367)


The mechanisms of electron transport in a Stationary Plasma Thruster are still not clearly understood and numerical or theoretical models cannot at this moment state whether the measured conductivity in this device is due to electron-wall collisions or to field fluctuations.

Simple quasineutral hybrid models of the SPT where the electrons are described as a collisional fluid and ions are assumed to be collisionless have been developed. These models can predict reasonably well the discharge properties when some parameters (electron mobility, electron energy loss coefficient) are adequately adjusted. A transient version of these quasineutral models can reproduce well the low frequency, large amplitude oscillations observed in the SPT. The current oscillations are associated with a small oscillation of the location of the neutral density gradient and ionization source region. More work is however needed to confirm that the model provides the good physical interpretation of the oscillations.


Electron Energy Distribution Function Propulsion Plasma Current Oscillation Specific Impulse Radial Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Wilbur, R. G. Jahn, and F. C. Curran, Space electric propulsion plasmas, IEEE Transactions on Plasma Science 19:1167 (1991).CrossRefGoogle Scholar
  2. 2.
    J. R. Brophy, “Stationary plasma thruster evaluation in russia,” Report No. JPL 92-4 (1992).Google Scholar
  3. 3.
    G. S. Janes and R. S. Lowder, Anomalous electron diffusion and ion acceleration in a low-density plasma, Phys. Fluids 9:1115 (1966).CrossRefGoogle Scholar
  4. 4.
    H. R. Kaufman, Technology of closed-drift thrusters, AIAA Journal 23:78 (1985).MathSciNetGoogle Scholar
  5. 5.
    A. I. Morozov, Y. V. Esinchuk, G. N. Tilinin, A. V. Trofimov, Y. A. Sharov, and G. Y. Schepkin, Plasma accelerator with closed electron drift and extended acceleration zone, Sov. J. Plasma Phys. 17:38 (1972).Google Scholar
  6. 6.
    A. I. Morozov, Stationary plasma thruster (SPT) development steps and future perpectives, 23rd International Propulsion Conference, AIAA-93-101, Seattle, 1993.Google Scholar
  7. 7.
    A. I. Bugrova, V. Kim, N. A. Maslennikov, and A. I. Morozov, Physical processes and characteristics of stationary plasma thrusters with closed electron drift, 22nd International Propulsion Conference, IEPC-91-079, Viareggio, 1991.Google Scholar
  8. 8.
    A. I. Bugrova, A. V. Desiatskov, V. K. Kharchevnikov, and A. I. Morozov, Main features of physical processes in stationary plasma thrusters, 23rd International Propulsion Conference, IEPC-93-247, Seattle, 1993.Google Scholar
  9. 9.
    A. I. Morozov and A. P. Shubin, Electron kinetics in the wall-conductivity regime:I, Sov. J. Plasma Phys. 10:728 (1984).Google Scholar
  10. 10.
    A. I. Morozov and A. P. Shubin, Electron kinetics in the wall-conductivity regime:II, Sov. J. Plasma Phys. 10:734 (1984).Google Scholar
  11. 11.
    A. I. Morozov, Conditions for efficient current transport by near-wall conduction, Sov. Phys. Tech. Phys. 32:901 (1987).Google Scholar
  12. 12.
    A. I. Morozov and A. P. Shubin, Analytic methods in the theory of near-wall conductivity:I, Sov. J. Plasma Phys. 16:711 (1990).Google Scholar
  13. 13.
    A. I. Morozov and A. P. Shubin, Analytic methods in the theory of near-wall conductivity:II, Sov. J. Plasma Phys. 16:713 (1990).Google Scholar
  14. 14.
    A. I. Bugrova, A. I. Morozov, and V. K. Kharchevnikov, Wall-conductivity effects in channel of a closed-drift-circuit plasma accelerator, Sov. Tech. Phys. Lett. 9:1 (1983).Google Scholar
  15. 15.
    A. I. Bugrova, A. I. Morozov, and V. K. Kharchevnikov, Experimental investigation of near-wall conductivity, Sov. J. Plasma Phys. 16:849 (1990).Google Scholar
  16. 16.
    P. Degond, Un modèle de conductivité pariétale: application au moteur à propulsion ionique, C.R. Acad. Sci. Paris 322:797 (1996); P. Degond, On a model of near-wall conductivity and its application to plasma thrusters, to appear in SIAM J. on Appl. Math (1997).zbMATHMathSciNetGoogle Scholar
  17. 17.
    E. Y. Choueiri, Characterization of oscillations in closed drift thrusters, 30th Joint Propulsion Conference, AIAA-94-3013, Indianapolis, 1994.Google Scholar
  18. 18.
    M. Hirakawa and Y. Arakawa, Particle simulation of plasma phenomena in Hall thrusters, 24th International Electric Propulsion Conference, IEPC-95-164, Moscow, 1995.Google Scholar
  19. 19.
    J. C. Adam and A. Heron, “Modélisation d’un propulseur ionique de type SPT,” unpublished (1996).Google Scholar
  20. 20.
    S. Yoshikawa and D. J. Rose, Anomalous diffusion of a plasma across a magnetic field, Phys. Fluids 5:334 (1962).Google Scholar
  21. 21.
    C. A. Lentz and M. Martinez-Sanchez, Transient One Dimensional Numerical Simulation of Hall Thrusters, 29Th Joint Electric Propulsion Conference, AIAA-93-2491, Monterey, 1993.Google Scholar
  22. 22.
    D. H. Manzella, Simplified numerical description of SPT operation, 24th International Electric Propulsion Conference, IEPC-95-34, Moscow, 1995.Google Scholar
  23. 23.
    A. I. Morozov and V. V. Savelyev, Numerical simulation of plasma flow in SPT, 24th International Electric Propulsion Conference, IEPC-95-161, Moscow, 1995.Google Scholar
  24. 24.
    K. Komurasaki and Y. Arakawa, Two-Dimensional Numerical Model of Plasma Flow in a Hall Thruster, Journal of Propulsion Power 11:1317 (1995).Google Scholar
  25. 25.
    M. J. Fife, Master of Science Thesis, Massachusetts Institue of Technology, 1995.Google Scholar
  26. 26.
    Raizer, Gas Discharge Physics Springer-Verlag Berlin Heidelberg, (199 1).Google Scholar
  27. 27.
    V. Zhurin, J. Kahn, H. Kaufman, K. Kozubsky, and M. Day, Dynamic characteristics of closed drift thrusters, 23rd International Electric Propulsion Conference, IEPC-93-095, Seattle, 1993.Google Scholar
  28. 28.
    GDR CNES-CNRS-SEP-ONERA, Groupement de Recherche “Propulsion Plasma pour Vols Orbitaux” unpublished results (1996).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Centre de Physique des Plasmas et Applications de ToulouseUniversité Paul SabatierToulouse cedexFRANCE

Personalised recommendations