Skip to main content

Modeling of a Magnetized Plasma: The Stationary Plasma Thruster

  • Chapter
Book cover Electron Kinetics and Applications of Glow Discharges

Part of the book series: NATO Science Series: B ((NSSB,volume 367))

  • 445 Accesses

Conclusion

The mechanisms of electron transport in a Stationary Plasma Thruster are still not clearly understood and numerical or theoretical models cannot at this moment state whether the measured conductivity in this device is due to electron-wall collisions or to field fluctuations.

Simple quasineutral hybrid models of the SPT where the electrons are described as a collisional fluid and ions are assumed to be collisionless have been developed. These models can predict reasonably well the discharge properties when some parameters (electron mobility, electron energy loss coefficient) are adequately adjusted. A transient version of these quasineutral models can reproduce well the low frequency, large amplitude oscillations observed in the SPT. The current oscillations are associated with a small oscillation of the location of the neutral density gradient and ionization source region. More work is however needed to confirm that the model provides the good physical interpretation of the oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Wilbur, R. G. Jahn, and F. C. Curran, Space electric propulsion plasmas, IEEE Transactions on Plasma Science 19:1167 (1991).

    Article  Google Scholar 

  2. J. R. Brophy, “Stationary plasma thruster evaluation in russia,” Report No. JPL 92-4 (1992).

    Google Scholar 

  3. G. S. Janes and R. S. Lowder, Anomalous electron diffusion and ion acceleration in a low-density plasma, Phys. Fluids 9:1115 (1966).

    Article  Google Scholar 

  4. H. R. Kaufman, Technology of closed-drift thrusters, AIAA Journal 23:78 (1985).

    MathSciNet  Google Scholar 

  5. A. I. Morozov, Y. V. Esinchuk, G. N. Tilinin, A. V. Trofimov, Y. A. Sharov, and G. Y. Schepkin, Plasma accelerator with closed electron drift and extended acceleration zone, Sov. J. Plasma Phys. 17:38 (1972).

    Google Scholar 

  6. A. I. Morozov, Stationary plasma thruster (SPT) development steps and future perpectives, 23rd International Propulsion Conference, AIAA-93-101, Seattle, 1993.

    Google Scholar 

  7. A. I. Bugrova, V. Kim, N. A. Maslennikov, and A. I. Morozov, Physical processes and characteristics of stationary plasma thrusters with closed electron drift, 22nd International Propulsion Conference, IEPC-91-079, Viareggio, 1991.

    Google Scholar 

  8. A. I. Bugrova, A. V. Desiatskov, V. K. Kharchevnikov, and A. I. Morozov, Main features of physical processes in stationary plasma thrusters, 23rd International Propulsion Conference, IEPC-93-247, Seattle, 1993.

    Google Scholar 

  9. A. I. Morozov and A. P. Shubin, Electron kinetics in the wall-conductivity regime:I, Sov. J. Plasma Phys. 10:728 (1984).

    Google Scholar 

  10. A. I. Morozov and A. P. Shubin, Electron kinetics in the wall-conductivity regime:II, Sov. J. Plasma Phys. 10:734 (1984).

    Google Scholar 

  11. A. I. Morozov, Conditions for efficient current transport by near-wall conduction, Sov. Phys. Tech. Phys. 32:901 (1987).

    Google Scholar 

  12. A. I. Morozov and A. P. Shubin, Analytic methods in the theory of near-wall conductivity:I, Sov. J. Plasma Phys. 16:711 (1990).

    Google Scholar 

  13. A. I. Morozov and A. P. Shubin, Analytic methods in the theory of near-wall conductivity:II, Sov. J. Plasma Phys. 16:713 (1990).

    Google Scholar 

  14. A. I. Bugrova, A. I. Morozov, and V. K. Kharchevnikov, Wall-conductivity effects in channel of a closed-drift-circuit plasma accelerator, Sov. Tech. Phys. Lett. 9:1 (1983).

    Google Scholar 

  15. A. I. Bugrova, A. I. Morozov, and V. K. Kharchevnikov, Experimental investigation of near-wall conductivity, Sov. J. Plasma Phys. 16:849 (1990).

    Google Scholar 

  16. P. Degond, Un modèle de conductivité pariétale: application au moteur à propulsion ionique, C.R. Acad. Sci. Paris 322:797 (1996); P. Degond, On a model of near-wall conductivity and its application to plasma thrusters, to appear in SIAM J. on Appl. Math (1997).

    MATH  MathSciNet  Google Scholar 

  17. E. Y. Choueiri, Characterization of oscillations in closed drift thrusters, 30th Joint Propulsion Conference, AIAA-94-3013, Indianapolis, 1994.

    Google Scholar 

  18. M. Hirakawa and Y. Arakawa, Particle simulation of plasma phenomena in Hall thrusters, 24th International Electric Propulsion Conference, IEPC-95-164, Moscow, 1995.

    Google Scholar 

  19. J. C. Adam and A. Heron, “Modélisation d’un propulseur ionique de type SPT,” unpublished (1996).

    Google Scholar 

  20. S. Yoshikawa and D. J. Rose, Anomalous diffusion of a plasma across a magnetic field, Phys. Fluids 5:334 (1962).

    Google Scholar 

  21. C. A. Lentz and M. Martinez-Sanchez, Transient One Dimensional Numerical Simulation of Hall Thrusters, 29Th Joint Electric Propulsion Conference, AIAA-93-2491, Monterey, 1993.

    Google Scholar 

  22. D. H. Manzella, Simplified numerical description of SPT operation, 24th International Electric Propulsion Conference, IEPC-95-34, Moscow, 1995.

    Google Scholar 

  23. A. I. Morozov and V. V. Savelyev, Numerical simulation of plasma flow in SPT, 24th International Electric Propulsion Conference, IEPC-95-161, Moscow, 1995.

    Google Scholar 

  24. K. Komurasaki and Y. Arakawa, Two-Dimensional Numerical Model of Plasma Flow in a Hall Thruster, Journal of Propulsion Power 11:1317 (1995).

    Google Scholar 

  25. M. J. Fife, Master of Science Thesis, Massachusetts Institue of Technology, 1995.

    Google Scholar 

  26. Raizer, Gas Discharge Physics Springer-Verlag Berlin Heidelberg, (199 1).

    Google Scholar 

  27. V. Zhurin, J. Kahn, H. Kaufman, K. Kozubsky, and M. Day, Dynamic characteristics of closed drift thrusters, 23rd International Electric Propulsion Conference, IEPC-93-095, Seattle, 1993.

    Google Scholar 

  28. GDR CNES-CNRS-SEP-ONERA, Groupement de Recherche “Propulsion Plasma pour Vols Orbitaux” unpublished results (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Boeuf, JP., Garrigues, L., Pitchford, L.C. (2002). Modeling of a Magnetized Plasma: The Stationary Plasma Thruster. In: Kortshagen, U., Tsendin, L.D. (eds) Electron Kinetics and Applications of Glow Discharges. NATO Science Series: B, vol 367. Springer, Boston, MA. https://doi.org/10.1007/0-306-47076-4_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47076-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45822-4

  • Online ISBN: 978-0-306-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics