Advertisement

Convected Scheme Simulations of Glow Discharges

Chapter
Part of the NATO Science Series: B book series (NSSB, volume 367)

4. Conclusion

The Convected Scheme (CS) was reviewed, with emphasis on recent modifications of the scheme which make it particularly accurate and effective in a variety of different physical situations corresponding to several important classes of discharges. Detailed discussion of the algorithm and results for a dc positive column were compared to Monte Carlo simulations and excellent agreement was found.

Keywords

Moving Cell Radial Motion Fixed Mesh Computational Mesh Convect Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Segur and R. Keller: Journal of Computational Physics, 24, 43 (1977).CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    J. W. Eastwood: Computer Physics Communications, 43, 89 (1986).CrossRefADSGoogle Scholar
  3. 3.
    J. W. Eastwood: Computer Physics Communications, 44, 73 (1987).CrossRefADSzbMATHGoogle Scholar
  4. 4.
    H. L. Berk and K. V. Roberts: Methods Comput. Phys., 9, 88 (1970).Google Scholar
  5. 5.
    T. J. Sommerer, W. N. G. Hitchon and J. E. Lawler: Physical Review Letters, 63, 2361 (1989).CrossRefADSGoogle Scholar
  6. 6.
    T. J. Sommerer, W. N. G. Hitchon and J. E. Lawler: Physical Review A, 39, 6356, (1989).CrossRefADSGoogle Scholar
  7. 7.
    W. N. G. Hitchon, G. J. Parker and J. E. Lawler: IEEE Transactions on Plasma Science, 22, 267 (1994).CrossRefADSGoogle Scholar
  8. 8.
    W. N. G. Hitchon, G. J. Parker and J. E. Lawler: IEEE Transactions on Plasma Science, 21, 228 (1993).CrossRefADSGoogle Scholar
  9. 9.
    W. N. G. Hitchon and E. R. Keiter: J. Comp. Phys., 112, 226 (1994).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    G. J. Parker, W. N. G. Hitchon and J. E. Lawler: Physics of Fluids B, 5, 646, (1993).ADSCrossRefGoogle Scholar
  11. 11.
    G. J. Parker, W. N. G. Hitchon and J. E. Lawler: Phys. Lett A, 174, 308, (1993).CrossRefADSGoogle Scholar
  12. 12.
    G. J. Parker, W. N. G. Hitchon and J. E. Lawler: Physical Review E, 50, 3210 (1994).CrossRefADSGoogle Scholar
  13. 13.
    G. J. Parker and W. N. G. Hitchon: Jap. J. Appl. Phys., accepted for publication (1997).Google Scholar
  14. 14.
    V. Kolobov, G. J. Parker and W. N. G. Hitchon: Physical Review E, 53, 1110 (1996).CrossRefADSGoogle Scholar
  15. 15.
    J. P. Verboncoeur, G. J. Parker, B. M. Penetrante and W. L. Morgan: J. App. Phys., 80, 1299 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    U. Kortshagen, G. J. Parker and J. E. Lawler, Phys. Rev, E, 54, 6746 (1996).CrossRefADSGoogle Scholar
  17. 17.
    J. H. Ingold: Gaseous Electronics, (Academic Press, New York, 1978).Google Scholar
  18. 18.
    L. Tonks and I. Langmuir: Physical Review, 34, 876 (1929).CrossRefADSGoogle Scholar
  19. 19.
    W. Schottky: Z. Phys., 25, 635 (1924).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations