Principles of the Electron Kinetics in Glow Discharges

Part of the NATO Science Series: B book series (NSSB, volume 367)


Inelastic Collision Elastic Collision Electron Distribution Function Glow Discharge Plasma Average Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Druyvesteyn, Der Niedervoltbogen, Zs. Phys., 64:781, (1930).ADSCrossRefGoogle Scholar
  2. 2.
    B. I. Davydov, Uber die Geschwindigkeitsverteilung der sich im elektrischen Felde bewegenden Elektronen, Phys. Zeits. Sovjetunion, 859, (1935).Google Scholar
  3. 3.
    W. P. Allis, “Motion of ions and electrons”, in “Handbuch der Physik”, Springer, Berlin, (1935).Google Scholar
  4. 4.
    T. Holstein, Energy distribution of electrons in high frequency gas discharges, Phys. Rev., 70:367, (1946).CrossRefADSGoogle Scholar
  5. 5.
    I. P. Shkarofsky, T. W. Johnston, M. P. Bachinsky, “The particle kinetics of plasmas”, Addison-Wesley, Reading, (1966).Google Scholar
  6. 6.
    H. Bender, K. G. Muller, Striations als Eigenloesungen der Eletktronenbewegung im elektrischen Feld, Zs. Phys., 263:299, (1973).CrossRefADSGoogle Scholar
  7. 7.
    H. G. Lergon, K. G. Muller, Oertiche Relaxation der Elektronen-Energieverteilung in hohen Elektrischen Feldem, Zs. Phys., 268:157, (1973).CrossRefADSGoogle Scholar
  8. 8.
    K. G. Muller, W. O. Muller, Simulation of the electron energy relaxation in a weakly ionized plasma, Zs. Naturforsch., 30a:1553, (1975).ADSGoogle Scholar
  9. 9.
    T. Ruzichka, K. Rohlena, On the non-hydrodinamic properties of electron gas in the plasma of a dc discharge, Czech. J. Phys, B22:906, (1972).CrossRefADSGoogle Scholar
  10. 10.
    L. D. Tsendin, Electron distribution function of weakly ionized plasmas in nonuniform electric fields I,II, Sov. J. Plasma. Phys, 8:96; 8:228, (1982).Google Scholar
  11. 11.
    L. C. Pitchford, S. V. ONeil, J. R. Rumble, Extended Boltzmann analysis of electron swarm experiments, Phys. Rev. A, 23:294, (1981).CrossRefADSGoogle Scholar
  12. 12.
    L. C. Pitchford, A. Phelps, Comparative calculations of electron-swarm properties in N2 at moderate E/N values, Phys. Rev. A, 25:540, (1982).CrossRefADSGoogle Scholar
  13. 13.
    A. Phelps, B. M. Jelenkovic, L. C. Pitchford, Symplified models of electron exitation and ionization at very high E/N, Phys. Rev. A, 36:5327, (1987).CrossRefADSGoogle Scholar
  14. 14.
    R. Winkler, G. L. Braglia, A. Hess, J. Wilhelm, Fundamentals of a technique for determining electron distribution functions by multi-term even-order expansion in Legendre polinomials, Beitr. Plasmaphysik, 24:657, (1984).ADSCrossRefGoogle Scholar
  15. 15.
    A. P. Dmitriev, L. D. Tsendin, Distribution function of electrons scattered with a large energy loss in an electric field, Sov. Phys.-JETP, 54:1071, (1981).Google Scholar
  16. 16.
    P. Morse, H. Feshbach, “Methods of theoretical physics”, §2.4, Mc. Graw-Hill, NY, (1953).zbMATHGoogle Scholar
  17. 17.
    H. Dreicer, Electron and ion runaway in a fully ionized gas I,II, Phys. Rev., 115:238, (1959); Phys. Rev., 117:329, (1960)CrossRefADSzbMATHMathSciNetGoogle Scholar
  18. 18.
    A. V. Gurevich, On the theory of the electron runaway effect, Sov. Phys.-JETP, 39:1296, (1960). (in Russian)zbMATHGoogle Scholar
  19. 19.
    A. B. Parker, P. C. Johnson, The dielectric breakdown of low-density gases, Proc. Roy. Soc. Lond, A325:511, (1971).ADSGoogle Scholar
  20. 20.
    L. D. Landau, E. M. Lifshitz, “Quantum mechanics — non relativistic theory”, §139, §148, Addison-Wesley, Reading, (1965).zbMATHGoogle Scholar
  21. 21.
    L. D. Landau, E. M. Lifshitz, “Electrodinamics of condensed media”, §113.Google Scholar
  22. 22.
    V. I. Kolobov, L. D. Tsendin, Analytic model of short gas discharge in light gases, Phys. Rev. A, 46:7837, (1992).CrossRefADSGoogle Scholar
  23. 23.
    I. Kuen, F. Howorka, and H. Störy, Population of excited He states (3 n 8) by dielectronic He recombination in dc hollow-cathode discharge, Phys. Rev. A, 23:829, (1981).CrossRefADSGoogle Scholar
  24. 24.
    W. T. Miles, R. Tompson, A. E. S. Green, Electron-Impact cross sections and energy deposition in molecular Hydrogen, J. Appl. Phys., 43(2):678, (1972).CrossRefADSGoogle Scholar
  25. 25.
    L. D. Tsendin, Electron kinetics in non-uniform glow discharge plasmas, Plasma Sources Sci.&Techn., 4:200, (1995).ADSCrossRefGoogle Scholar
  26. 26.
    V. A. Godyak, V. I. Kolobov, Nonlocal electron kinetics in collisional gas discharge plasma, IEEE Tr., PS-23:503, (1995).Google Scholar
  27. 27.
    U. Kortshagen, C. Busch, L. D. Tsendin, On simplifying approaches to the solution of the Boltzman equation in spatially inhomogeneous plasmas, Plasma Sources Sci. & Techn., 5(1):1, (1996).ADSCrossRefGoogle Scholar
  28. 28.
    D. Uhrlandt, R. Winkler, Radially inhomogeneous electron kinetics in the DC column plasma, J. Phys. D, 29:115, (1996).CrossRefADSGoogle Scholar
  29. 29.
    L. L. Alves, G. Gousset, M. Ferreira, Self-contained solution to the spatially inhomogeneous electron Boltzmann equation in a plamsa cylindrical positive column, Phys. Rev. E, 55(1):890, (1997).CrossRefADSGoogle Scholar
  30. 30.
    L. D. Tsendin, Yu. B. Golubovsky, Positive column of a low-density, low-pressure discharge, Sov. Phys.-Techn. Phys., 22:1068, (1977).Google Scholar
  31. 31.
    U. Kortshagen, G. J. Parker, J. E. Lawler, Comparison of Monte-Carlo simulations and non-local calculations of the electron distribution function in a positive column plasma, Phys. Rev. E, 54:6746, (1996).CrossRefADSGoogle Scholar
  32. 32.
    A. V. Nedospasov, Striations, Sov. Phys.-Uspekhi, 11:174, (1968).CrossRefADSGoogle Scholar
  33. 33.
    L. Pekarek, Ionization waves (striations), Sov. Phys.-Uspekhi, 11:201, (1968).CrossRefGoogle Scholar
  34. 34.
    K. Wojaczek, Der Positive Soule in Ar in Ubergangsbereich, IV, Beitrage Plasmaphys., 6:319, (1966).CrossRefGoogle Scholar
  35. 35.
    L. D. Tsendin, On propogation of longitudinal low-frequency waves in gas discharge plasma, Sov. Phys.-Techn. Phys., 14:1013, (1969).ADSGoogle Scholar
  36. 36.
    M. S. Gorelik, L. D. Tsendin, Hydrodinamic theory of large-amplitude ionization waves, Sov. Phys. Techn. Phys., 18:479, (1973).ADSGoogle Scholar
  37. 37.
    L. D. Tsendin, Ionization and drift-temperature waves in media with hot electrons, Sov. Phys.-Techn. Phys., 15:1245, (1970).ADSGoogle Scholar
  38. 38.
    Yu. B. Golubovsky, V. I. Kolobov, L. D. Tsendin, 2D theory of ionization waves in constricted discharge, Sov. Phys.-Techn. Phys., 31:31, (1985).Google Scholar
  39. 39.
    L. D. Tsendin, Ionization kinetics and ionization waves in Ne I,II, Sov. Phys.-Techn. Phys., 27:407, (1982).Google Scholar
  40. 40.
    V. A. Godyak. R. B. Piejak, Abnormal low electron energy and heating-mode transition in a low pressure Ar RF discharge at 13.56MHz, Phys. Rev. Lett, 65:996, (1990).CrossRefADSGoogle Scholar
  41. 41.
    K. Wiesemann, Characterisation of plasmas by advanced diagnostic methods, Pure. Appl. Chem., 68:1029, (1996).CrossRefGoogle Scholar
  42. 42.
    V. A. Godyak, Statistical heating of electrons at an oscillating plasma boundary, Sov. Phys.-Techn. Phys., 16:1013, (1972).Google Scholar
  43. 43.
    I. D. Kaganovich, L. D. Tsendin, Spatial-temporal averaging procedure and modelling of RFC discharge, IEEE Tr., PS-20:66, PS-20:86, (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.St.-Petersburg State Technical UniversitySt.-PetersburgRussia

Personalised recommendations