Skip to main content

Part of the book series: NATO Science Series: B ((NSSB,volume 367))

  • 460 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Druyvesteyn, Der Niedervoltbogen, Zs. Phys., 64:781, (1930).

    Article  ADS  Google Scholar 

  2. B. I. Davydov, Uber die Geschwindigkeitsverteilung der sich im elektrischen Felde bewegenden Elektronen, Phys. Zeits. Sovjetunion, 859, (1935).

    Google Scholar 

  3. W. P. Allis, “Motion of ions and electrons”, in “Handbuch der Physik”, Springer, Berlin, (1935).

    Google Scholar 

  4. T. Holstein, Energy distribution of electrons in high frequency gas discharges, Phys. Rev., 70:367, (1946).

    Article  ADS  Google Scholar 

  5. I. P. Shkarofsky, T. W. Johnston, M. P. Bachinsky, “The particle kinetics of plasmas”, Addison-Wesley, Reading, (1966).

    Google Scholar 

  6. H. Bender, K. G. Muller, Striations als Eigenloesungen der Eletktronenbewegung im elektrischen Feld, Zs. Phys., 263:299, (1973).

    Article  ADS  Google Scholar 

  7. H. G. Lergon, K. G. Muller, Oertiche Relaxation der Elektronen-Energieverteilung in hohen Elektrischen Feldem, Zs. Phys., 268:157, (1973).

    Article  ADS  Google Scholar 

  8. K. G. Muller, W. O. Muller, Simulation of the electron energy relaxation in a weakly ionized plasma, Zs. Naturforsch., 30a:1553, (1975).

    ADS  Google Scholar 

  9. T. Ruzichka, K. Rohlena, On the non-hydrodinamic properties of electron gas in the plasma of a dc discharge, Czech. J. Phys, B22:906, (1972).

    Article  ADS  Google Scholar 

  10. L. D. Tsendin, Electron distribution function of weakly ionized plasmas in nonuniform electric fields I,II, Sov. J. Plasma. Phys, 8:96; 8:228, (1982).

    Google Scholar 

  11. L. C. Pitchford, S. V. ONeil, J. R. Rumble, Extended Boltzmann analysis of electron swarm experiments, Phys. Rev. A, 23:294, (1981).

    Article  ADS  Google Scholar 

  12. L. C. Pitchford, A. Phelps, Comparative calculations of electron-swarm properties in N2 at moderate E/N values, Phys. Rev. A, 25:540, (1982).

    Article  ADS  Google Scholar 

  13. A. Phelps, B. M. Jelenkovic, L. C. Pitchford, Symplified models of electron exitation and ionization at very high E/N, Phys. Rev. A, 36:5327, (1987).

    Article  ADS  Google Scholar 

  14. R. Winkler, G. L. Braglia, A. Hess, J. Wilhelm, Fundamentals of a technique for determining electron distribution functions by multi-term even-order expansion in Legendre polinomials, Beitr. Plasmaphysik, 24:657, (1984).

    Article  ADS  Google Scholar 

  15. A. P. Dmitriev, L. D. Tsendin, Distribution function of electrons scattered with a large energy loss in an electric field, Sov. Phys.-JETP, 54:1071, (1981).

    Google Scholar 

  16. P. Morse, H. Feshbach, “Methods of theoretical physics”, §2.4, Mc. Graw-Hill, NY, (1953).

    MATH  Google Scholar 

  17. H. Dreicer, Electron and ion runaway in a fully ionized gas I,II, Phys. Rev., 115:238, (1959); Phys. Rev., 117:329, (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. A. V. Gurevich, On the theory of the electron runaway effect, Sov. Phys.-JETP, 39:1296, (1960). (in Russian)

    MATH  Google Scholar 

  19. A. B. Parker, P. C. Johnson, The dielectric breakdown of low-density gases, Proc. Roy. Soc. Lond, A325:511, (1971).

    ADS  Google Scholar 

  20. L. D. Landau, E. M. Lifshitz, “Quantum mechanics — non relativistic theory”, §139, §148, Addison-Wesley, Reading, (1965).

    MATH  Google Scholar 

  21. L. D. Landau, E. M. Lifshitz, “Electrodinamics of condensed media”, §113.

    Google Scholar 

  22. V. I. Kolobov, L. D. Tsendin, Analytic model of short gas discharge in light gases, Phys. Rev. A, 46:7837, (1992).

    Article  ADS  Google Scholar 

  23. I. Kuen, F. Howorka, and H. Störy, Population of excited He states (3 n 8) by dielectronic He recombination in dc hollow-cathode discharge, Phys. Rev. A, 23:829, (1981).

    Article  ADS  Google Scholar 

  24. W. T. Miles, R. Tompson, A. E. S. Green, Electron-Impact cross sections and energy deposition in molecular Hydrogen, J. Appl. Phys., 43(2):678, (1972).

    Article  ADS  Google Scholar 

  25. L. D. Tsendin, Electron kinetics in non-uniform glow discharge plasmas, Plasma Sources Sci.&Techn., 4:200, (1995).

    Article  ADS  Google Scholar 

  26. V. A. Godyak, V. I. Kolobov, Nonlocal electron kinetics in collisional gas discharge plasma, IEEE Tr., PS-23:503, (1995).

    Google Scholar 

  27. U. Kortshagen, C. Busch, L. D. Tsendin, On simplifying approaches to the solution of the Boltzman equation in spatially inhomogeneous plasmas, Plasma Sources Sci. & Techn., 5(1):1, (1996).

    Article  ADS  Google Scholar 

  28. D. Uhrlandt, R. Winkler, Radially inhomogeneous electron kinetics in the DC column plasma, J. Phys. D, 29:115, (1996).

    Article  ADS  Google Scholar 

  29. L. L. Alves, G. Gousset, M. Ferreira, Self-contained solution to the spatially inhomogeneous electron Boltzmann equation in a plamsa cylindrical positive column, Phys. Rev. E, 55(1):890, (1997).

    Article  ADS  Google Scholar 

  30. L. D. Tsendin, Yu. B. Golubovsky, Positive column of a low-density, low-pressure discharge, Sov. Phys.-Techn. Phys., 22:1068, (1977).

    Google Scholar 

  31. U. Kortshagen, G. J. Parker, J. E. Lawler, Comparison of Monte-Carlo simulations and non-local calculations of the electron distribution function in a positive column plasma, Phys. Rev. E, 54:6746, (1996).

    Article  ADS  Google Scholar 

  32. A. V. Nedospasov, Striations, Sov. Phys.-Uspekhi, 11:174, (1968).

    Article  ADS  Google Scholar 

  33. L. Pekarek, Ionization waves (striations), Sov. Phys.-Uspekhi, 11:201, (1968).

    Article  Google Scholar 

  34. K. Wojaczek, Der Positive Soule in Ar in Ubergangsbereich, IV, Beitrage Plasmaphys., 6:319, (1966).

    Article  Google Scholar 

  35. L. D. Tsendin, On propogation of longitudinal low-frequency waves in gas discharge plasma, Sov. Phys.-Techn. Phys., 14:1013, (1969).

    ADS  Google Scholar 

  36. M. S. Gorelik, L. D. Tsendin, Hydrodinamic theory of large-amplitude ionization waves, Sov. Phys. Techn. Phys., 18:479, (1973).

    ADS  Google Scholar 

  37. L. D. Tsendin, Ionization and drift-temperature waves in media with hot electrons, Sov. Phys.-Techn. Phys., 15:1245, (1970).

    ADS  Google Scholar 

  38. Yu. B. Golubovsky, V. I. Kolobov, L. D. Tsendin, 2D theory of ionization waves in constricted discharge, Sov. Phys.-Techn. Phys., 31:31, (1985).

    Google Scholar 

  39. L. D. Tsendin, Ionization kinetics and ionization waves in Ne I,II, Sov. Phys.-Techn. Phys., 27:407, (1982).

    Google Scholar 

  40. V. A. Godyak. R. B. Piejak, Abnormal low electron energy and heating-mode transition in a low pressure Ar RF discharge at 13.56MHz, Phys. Rev. Lett, 65:996, (1990).

    Article  ADS  Google Scholar 

  41. K. Wiesemann, Characterisation of plasmas by advanced diagnostic methods, Pure. Appl. Chem., 68:1029, (1996).

    Article  Google Scholar 

  42. V. A. Godyak, Statistical heating of electrons at an oscillating plasma boundary, Sov. Phys.-Techn. Phys., 16:1013, (1972).

    Google Scholar 

  43. I. D. Kaganovich, L. D. Tsendin, Spatial-temporal averaging procedure and modelling of RFC discharge, IEEE Tr., PS-20:66, PS-20:86, (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Tsendin, L.D. (2002). Principles of the Electron Kinetics in Glow Discharges. In: Kortshagen, U., Tsendin, L.D. (eds) Electron Kinetics and Applications of Glow Discharges. NATO Science Series: B, vol 367. Springer, Boston, MA. https://doi.org/10.1007/0-306-47076-4_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47076-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45822-4

  • Online ISBN: 978-0-306-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics