Skip to main content

Collisionless Heating in Capacitively-Coupled Radio Frequency Discharges

  • Chapter
Electron Kinetics and Applications of Glow Discharges

Part of the book series: NATO Science Series: B ((NSSB,volume 367))

  • 452 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Lieberman and A. J. Lichtenberg. Principles of Plasma Discharges and Materials Processing. Wiley, New York, 1994.

    Google Scholar 

  2. Y. P. Raizer. Gas Discharge Physics. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  3. Y. P. Raizer, M. N. Shneider, and N. A. Yatsenko. Radio-frequency capacitive discharges. CRC Press, Boca Raton, 1995.

    Google Scholar 

  4. V. A. Godyak. Soviet Radio Frequency Discharge Research. Delphic Associates, Inc., Falls Church, VA, 1986.

    Google Scholar 

  5. D. B. Graves. Plasma processing. IEEE Trans. Plasma Sci., 22(1):31–42, February 1994.

    Article  ADS  Google Scholar 

  6. O. A. Popov and V. A. Godyak. Power dissipated in low-pressure radio-frequency discharge plasmas. J. Appl. Phys., 57(1):53–58, January 1985.

    Article  ADS  Google Scholar 

  7. V. A. Godyak and R. B. Piejak. Abnormally low electron temperature and heating-mode transition in a low-pressure rf discharge at 13.56 MHz. Phys. Rev. Lett., 65(8):996–999, August 1990.

    Article  ADS  Google Scholar 

  8. V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich. Measurements of electron energy distribution in low-pressure rf discharges. Plasma Sources Sci. Technol., 1(1):36–58, March 1992.

    Article  ADS  Google Scholar 

  9. M. A. Lieberman. Analytical solution for capacitive rf sheath. IEEE Trans. Plasma Sci., 16(6):638–644, December 1988.

    Article  ADS  Google Scholar 

  10. I. D. Kaganovich and L. D. Tsendin. Low-pressure rf discharge in the free-flight regime. IEEE Trans. Plasma Sci., 20(2):86–92, April 1992.

    Article  ADS  Google Scholar 

  11. I. D. Kaganovich, V. I. Kolobov, and L. D. Tsendin. Stochastic electron heating in bounded radio-frequency plasmas. Appl. Phys. Lett., 69(25), December 1996.

    Google Scholar 

  12. M. M. Turner. Pressure heating of electrons in capacitively-coupled rf discharges. Phys. Rev. Lett., 75(7):1312–1315, August 1995.

    Article  ADS  Google Scholar 

  13. M. M. Turner, D. A. W. Hutchinson, R. A. Doyle, and M. B. Hopkins. Heating mode transition induced by a magnetic field in a capacitive rf discharge. Phys. Rev. Lett., 76(12):2069–2072, March 1996.

    Article  ADS  Google Scholar 

  14. C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. Adam Hilger, Bristol, 1991.

    Book  Google Scholar 

  15. R. W. Hackney and J. W. Eastwood. Computer Simulation Using Particles. Adam Hilger, Bristol, 1988.

    Google Scholar 

  16. C. K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans. Plasma Sci., 19(2):65–85, April 1991.

    Article  ADS  Google Scholar 

  17. V. Vahedi and M. Surendra. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comp. Phys. Comm., 87:178–198, 1995.

    ADS  Google Scholar 

  18. J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline. Longitudinal electron diffusion coefficients in gases: Noble gases. J. Appl. Phys., 71(11):5363–5371, June 1992.

    Article  ADS  Google Scholar 

  19. K. Tachibana. Excitation of the 1s 5, 1s 4, 1s 3, and 1s 2 levels of argon by low-energy electrons. Phy. Rev. A, 34(2):1007–1015, August 1986.

    Article  ADS  Google Scholar 

  20. A. V. Phelps. Cross sections and swarm coefficients for nitrogen ions and neutrals in N2 and argon ions and neutrals in Ar for energies from 0.1 eV to 10 keV. J. Chem. Phys. Ref. Data, 20(3):557–573, 1991.

    Article  ADS  Google Scholar 

  21. D. Vender and R. W. Boswell. Numerical modeling of low-pressure RF plasmas. IEEE Trans. Plasma Sci., 18(4):725–732, August 1990.

    Article  ADS  Google Scholar 

  22. B. E. Cherrington. Gaseous Electronics and Gas Lasers. Pergamon Press, Oxford, 1979.

    Google Scholar 

  23. G. G. Lister, Y.-M. Li, and V. A. Godyak. Electrical conductivity in high-frequency plasmas. J. Appl. Phys., 79(12):8993–8997, June 1996.

    Article  ADS  Google Scholar 

  24. V. Vahedi, C. K. Birdsall, M. A. Lieberman, G. DiPeso, and T. D. Rognlien Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. II. Comparison with laboratory measurements of electron energy distribution functions. Plasma Sources Sci. Technol., 2:273–278, 1993.

    Article  ADS  Google Scholar 

  25. V. A. Godyak and R. B. Piejak. Paradoxical spatial distribution of the electron temperature in a low pressure rf discharge. Appl. Phys. Lett., 63(23):3137–3139, December 1993.

    Article  ADS  Google Scholar 

  26. J. M. Berger, W. A. Newcomb, J. M. Dawson, E. A. Frieman, R. M. Kulsrud, and A. Lenard. Heating of a confined plasma by oscillating electromagnetic fields. Phys. Fluids, 1(4):301–307, July-August 1958.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. G. W. Hammett and F. W. Perkins. Fluid moment models for Landau damping with application to the ion-temperature-gradient instability. Phys. Rev. Lett., 64(25):3019–3022, June 1990.

    Article  ADS  Google Scholar 

  28. M. Surendra and M. Dalvie. Moment analysis of rf parallel-plate-discharge simulations using the particle-in-cell with monte carlo collisions technique. Phy. Rev. E, 48(5):3914–3924, November 1993.

    Article  ADS  Google Scholar 

  29. L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon Press, Oxford, 1978.

    Google Scholar 

  30. M. Surendra and D. B. Graves. Electron accoustic waves in capacitively coupled, low-pressure rf glow discharges. Phys. Rev. Lett., 66(11):1469–1472, November 1991.

    Article  ADS  Google Scholar 

  31. M. Surendra and D. Vender. Collisionless electron heating by radio-frequency plasma sheaths. Appl. Phys. Lett., 65(2):153–155, July 1994.

    Article  ADS  Google Scholar 

  32. L. D. Landau. On the vibrations of the electronic plasma. J. Phys., 10(1), 1946.

    Google Scholar 

  33. A. F. Alexandrov, L. S. Bogdankevich, and A. A. Rukhadze. Priciples of Plasma Electrodynamics. Springer-Verlag, Berlin, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Turner, M.M. (2002). Collisionless Heating in Capacitively-Coupled Radio Frequency Discharges. In: Kortshagen, U., Tsendin, L.D. (eds) Electron Kinetics and Applications of Glow Discharges. NATO Science Series: B, vol 367. Springer, Boston, MA. https://doi.org/10.1007/0-306-47076-4_19

Download citation

  • DOI: https://doi.org/10.1007/0-306-47076-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45822-4

  • Online ISBN: 978-0-306-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics