Advertisement

The Anomalous Skin Effect in Bounded Systems

Chapter
  • 355 Downloads
Part of the NATO Science Series: B book series (NSSB, volume 367)

Conclusion

We have described the state of the art of nonlocal electrodynamics of bounded discharge plasmas. We revived classical works on the anomalous skin effect to analyze peculiarities of the electromagnetic phenomena in weakly collisional ICPs. Our calculations corroborated nonmonotonic distributions of the electromagnetic fields and electron current density, the existence of negative power absorption, and other interesting phenomena recently observed in experiments. We have analyzed the effect of weak static magnetic fields on the penetration of rf fields into weakly-collisional ICPs.

The elaboration of nonlocal electrodynamics in bounded systems is important for the development of novel plasma reactors operating at gas pressures below 10 mTorr. Currently used models designed for collisional plasmas do not contain the nonlocal effects we have discussed. Our treatment was based on simple models. Further development of theory and numerical tools is required for simulation of practical devices.

Keywords

Static Magnetic Field Skin Layer Skin Depth Skin Effect Plasma Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Lifshitz and L.P. Pitaevskii, Physical Kinetics, Pergamon Press, Oxford, 1981.Google Scholar
  2. 2.
    A.N. Kondratenko, Field Penetration into Plasmas, Atomizdat, Moscow, 1979, in Russian.Google Scholar
  3. 3.
    I.M. Lifshits, M.Ya. Azbel’, and M.I. Kaganov, Electron Theory of Metals, Consultants Bureau, New York-London, 1973.Google Scholar
  4. 4.
    P.M. Platzman and P.A. Wolff, Waves and Interactions in Solid State Plasmas, Academic Press, New York, 1973.Google Scholar
  5. 5.
    R.A. Demirkhanov, I. Kadysh, and Yu.S. Khodyrev, Sov. Phys. JETP 19, 791 (1964).Google Scholar
  6. 6.
    E.S. Weibel, Phys. Fluids 10, 741 (1967).CrossRefADSGoogle Scholar
  7. 7.
    V.I. Kolobov and D.J. Economou, Plasma Sources Sci. Technol. 6, 1 (1997).CrossRefADSGoogle Scholar
  8. 8.
    M.M. Turner, Phys. Rev. Lett. 71, 1844 (1993).CrossRefADSGoogle Scholar
  9. 9.
    N.S. Yoon, S.S. Kim, C.S. Chang, and D.-I. Choi, Phys. Rev. E. 54, 757 (1996).CrossRefADSGoogle Scholar
  10. 10.
    I.P. Shkarofsky, T.W. Johnson, and M.P. Bachinski, The Particle Kinetics of the Plasmas, Addison-Wesley, Reading, 1966.Google Scholar
  11. 11.
    V.I. Kolobov and V.A. Godyak, IEEE Trans. Plasma Sci. 23, 503 (1995).CrossRefADSGoogle Scholar
  12. 12.
    B.D. Fried and S.D. Conte, The Plasma Dispersion Function, Academic Press, New York, 1961.Google Scholar
  13. 13.
    K.N. Stepanov, Soviet Phys. JETP 36, 1035 (1959).zbMATHGoogle Scholar
  14. 14.
    I. Holstein, Phys. Rev. 88, 1427 (1952).CrossRefADSGoogle Scholar
  15. 15.
    V. Vahedi, M.A. Lieberman, G. DiPeso, T.D. Rognlien, and D. Hewett, J. Appl. Phys. 78, 1446 (1995).CrossRefADSGoogle Scholar
  16. 16.
    R.H. Cohen and T.D. Rognlien, Plasma Sources Sci. Technol. 5, 442 (1996).CrossRefADSGoogle Scholar
  17. 17.
    Yu.S. Sayasov, Helvetica Physica Acta 52, 288 (1979).MathSciNetGoogle Scholar
  18. 18.
    P.M. Platzman and S.J. Buchsbaum, Phys. Rev. 128, 1004 (1962).CrossRefADSGoogle Scholar
  19. 19.
    V.A. Godyak, Electron kinetics and electrodynamic characteristics of ICP in stochastic heating regime, in Electron Kinetics in Glow Discharges, edited by U. Kortschagen and L.D. Tsendin, Plenum Press, Inc., New York, 1997.Google Scholar
  20. 20.
    H.A. Blevin, J.A. Reynolds, and P. Thonemann, Phys. Fluids 13, 1259 (1970).CrossRefADSGoogle Scholar
  21. 21.
    H.A. Blevin, J.A. Reinolds, and P.C. Thonemann, Phys. Fluids 16, 82 (1973).CrossRefADSGoogle Scholar
  22. 22.
    S.M. Dikman and B.E. Meierovich, Soviet Physics JETP 37, 835 (1973).ADSGoogle Scholar
  23. 23.
    H.U. Eckert, The hundred year history of induction discharges, in Proc. 2nd Int Conf on Plasma Chem Technol., edited by H.V. Boenig, Lancaster, Pennsylvania, 1986, Technomic Publishing Company, Inc.Google Scholar
  24. 24.
    B. Joye and H. Schneider, Helvetica Physica Acta 51, 804 (1978).Google Scholar
  25. 25.
    H.A. Blevin, J.M. Greene, D.L. Jolly, and R.G. Storer, J. Plasma Phys. 10, 337 (1973).CrossRefADSGoogle Scholar
  26. 26.
    R.G. Storer, Phys. Fluids 16, 949 (1973).CrossRefADSGoogle Scholar
  27. 27.
    B.E. Meierovich, Soviet Physics JETP 10, 782 (1970).Google Scholar
  28. 28.
    A.I. Kondratenko, Soviet Physics-Technical Physics 17, 584 (1972).ADSGoogle Scholar
  29. 29.
    N.S. Yoon, S.M. Hwang, and D.-I. Choi, Phys. Rev. E 55, 7536 (1997).CrossRefADSGoogle Scholar
  30. 30.
    H.-J. Lee, I.-D. Yang, and K.-W. Whang, Plasma Sources Sci. Technol. 5, 383 (1996).CrossRefADSGoogle Scholar
  31. 31.
    B.M. Harvey and C.N. Lashmore-Davies, Phys. Fluids B 5, 3864 (1993).ADSCrossRefGoogle Scholar
  32. 32.
    K.P. Shamrai, V.P. Pavlenko, and V.B. Taranov, Plasma Phys. Control. Fusion 39, 505 (1997).CrossRefADSGoogle Scholar
  33. 33.
    I. D. Kaganovich, V.I. Kolobov, and L.D. Tsendin, Appl. Phys. Lett. 69, 3818 (1996).CrossRefADSGoogle Scholar
  34. 34.
    V.I. Kolobov, D.P. Lymberopoulos, and D.J. Economou, Phys. Rev. E 55, 3408 (1997).CrossRefADSGoogle Scholar
  35. 35.
    M. Tuszewski, Phys. Rev. Lett. 77, 1286 (1996).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Plasma Processing Laboratory Department of Chemical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations