Advertisement

Collisionless Electron Heating in RF Gas Discharges: II. The Role of Collisions and Non-linear Effects

Chapter
Part of the NATO Science Series: B book series (NSSB, volume 367)

Conclusions

  1. 1.

    It is shown that when λ > L, only resonance particles (ωLv x = n) contribute to the heating and as result for large velocities, where the fraction of resonance particles is small, collisionless heating is suppressed.

     
  2. 2.

    A plateau in the distribution function in the region of first resonance can be observed.

     
  3. 3.

    At smaller collision frequency the nonlinear effects should be accounted for. If kicks are perpendicular to the discharge boundaries a considerable suppression of collisionless heating appears due to nonlinear effects. In this case collisionless heating is proportional to collision frequency (D ~ v).

     

Keywords

Collision Frequency Electron Distribution Function Plasma Boundary Electron Heating Average Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Akhiezer and A.S. Bakai, Theory of stochastic particle acceleration, Sov. Phys. Dokl. 16: 1065 (1972).ADSGoogle Scholar
  2. 2.
    V.A. Godyak, Statistical heating of electrons at an oscillating plasma boundary, Sov. Phys. Tech. Phys. 16: 1073 (1972).ADSGoogle Scholar
  3. 3.
    C.G. Goedde, A.J. Lichtenberg and M.A. Lieberman, Self-consistent stochastic electron heating in radio frequency discharges, J. Appl. Phys. 64: 4375 (1988).CrossRefADSGoogle Scholar
  4. 4.
    I.D. Kaganovich and L.D. Tsendin, Low pressure rf discharge in the free flight regime, IEEE Trans. Plasma Sci. 20: 86 (1992).ADSCrossRefGoogle Scholar
  5. 5.
    M.M. Turner, Collisionless electron heating in a inductively coupled discharge, Phys. Rev. Lett, 71: 1844 (1993).CrossRefADSGoogle Scholar
  6. 6.
    V. Vahedi, M.A. Lieberman, G. Di Peso, T.D. Rognlien and D. Hewett, Analytic model of power deposition in inductively coupled plasma sources, J. Appl. Phys. 78: 1446 (1995).CrossRefADSGoogle Scholar
  7. 7.
    I.D. Kaganovich, V.I. Kolobov, L.D. Tsendin, Stochastic electron heating in bounded radio-frequency plasmas, J. Appl. Phys. Lett. 69: 3818 (1996).CrossRefADSGoogle Scholar
  8. 8.
    A.V. Timofeev, Cyclotron oscillations of an equilibrium plasma in: “Review of Plasma Physics v.14” ed. B.B. Kadomtsev, Consultants Bureau, New York-London (1989).Google Scholar
  9. 9.
    B. B. Kadomtsev, Landau damping and echo in a plasma, Sov. Phys. Usp. 11: 328 (1968).CrossRefADSGoogle Scholar
  10. 10.
    J. N. Istomin, V. Karpman, and D. Shkljar, Drag effects when there is resonance interaction between particles and a Langmuir waves in a inhomogeneous plasma, Sov. Phys. JETP 42: 463 (1975).ADSGoogle Scholar
  11. 11.
    G. Brodin, Non-linear Landau damping, Phys. Rev. Lett. 78: 1263 (1997).CrossRefADSGoogle Scholar
  12. 12.
    M.A. Lieberman and A.J. Lichtenberg, ”Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc., New York (1994)Google Scholar
  13. 13.
    R.H. Cohen and T.D. Rognlien, Electron kinetics in radio-frequency magnetic fields of inductive plasma sources, Plasma Sources Sci. Techn. 5: 442 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    Y. M. Aliev, I. D. Kaganovich, and H. Schlüter, Collisionless electron heating in RF gas discharges: I Quasilinear theory, in this bookGoogle Scholar
  15. 15.
    R.Z. Sagdeev, D.A. Usikov and G.M. Zaslavsky, “Nonlinear Physics from the Pendulum to Turbulence and Chaos” Chur: Harwood Academic Publishers (1988).zbMATHGoogle Scholar
  16. 16.
    A. P. Dmitriev and L. D. Tsendin, Distribution functions of electrons scattered with a large energy loss in an electric field, Sov. Phys JETP 54: 1071 (1981).Google Scholar
  17. 17.
    V. A. Godyak and R. B. Piejak, Abnormally low electron energy and heating-mode transition in a low-pressure Argon rf discharge at 13.56 MHz, Phys. Rev. Lett. 65: 996 (1990).CrossRefADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Experimental Physics IIRuhr-UniversityBochumGermany

Personalised recommendations