Skip to main content

Collisionless Electron Heating in RF Gas Discharges: II. The Role of Collisions and Non-linear Effects

  • Chapter
Book cover Electron Kinetics and Applications of Glow Discharges

Part of the book series: NATO Science Series: B ((NSSB,volume 367))

Conclusions

  1. 1.

    It is shown that when λ > L, only resonance particles (ωLv x = n) contribute to the heating and as result for large velocities, where the fraction of resonance particles is small, collisionless heating is suppressed.

  2. 2.

    A plateau in the distribution function in the region of first resonance can be observed.

  3. 3.

    At smaller collision frequency the nonlinear effects should be accounted for. If kicks are perpendicular to the discharge boundaries a considerable suppression of collisionless heating appears due to nonlinear effects. In this case collisionless heating is proportional to collision frequency (D ~ v).

on leave from St. Petersburg Technical University, Physical Technical Department, Polytechnicheskaya 29, 195251 St. Petersburg, Russia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.I. Akhiezer and A.S. Bakai, Theory of stochastic particle acceleration, Sov. Phys. Dokl. 16: 1065 (1972).

    ADS  Google Scholar 

  2. V.A. Godyak, Statistical heating of electrons at an oscillating plasma boundary, Sov. Phys. Tech. Phys. 16: 1073 (1972).

    ADS  Google Scholar 

  3. C.G. Goedde, A.J. Lichtenberg and M.A. Lieberman, Self-consistent stochastic electron heating in radio frequency discharges, J. Appl. Phys. 64: 4375 (1988).

    Article  ADS  Google Scholar 

  4. I.D. Kaganovich and L.D. Tsendin, Low pressure rf discharge in the free flight regime, IEEE Trans. Plasma Sci. 20: 86 (1992).

    Article  ADS  Google Scholar 

  5. M.M. Turner, Collisionless electron heating in a inductively coupled discharge, Phys. Rev. Lett, 71: 1844 (1993).

    Article  ADS  Google Scholar 

  6. V. Vahedi, M.A. Lieberman, G. Di Peso, T.D. Rognlien and D. Hewett, Analytic model of power deposition in inductively coupled plasma sources, J. Appl. Phys. 78: 1446 (1995).

    Article  ADS  Google Scholar 

  7. I.D. Kaganovich, V.I. Kolobov, L.D. Tsendin, Stochastic electron heating in bounded radio-frequency plasmas, J. Appl. Phys. Lett. 69: 3818 (1996).

    Article  ADS  Google Scholar 

  8. A.V. Timofeev, Cyclotron oscillations of an equilibrium plasma in: “Review of Plasma Physics v.14” ed. B.B. Kadomtsev, Consultants Bureau, New York-London (1989).

    Google Scholar 

  9. B. B. Kadomtsev, Landau damping and echo in a plasma, Sov. Phys. Usp. 11: 328 (1968).

    Article  ADS  Google Scholar 

  10. J. N. Istomin, V. Karpman, and D. Shkljar, Drag effects when there is resonance interaction between particles and a Langmuir waves in a inhomogeneous plasma, Sov. Phys. JETP 42: 463 (1975).

    ADS  Google Scholar 

  11. G. Brodin, Non-linear Landau damping, Phys. Rev. Lett. 78: 1263 (1997).

    Article  ADS  Google Scholar 

  12. M.A. Lieberman and A.J. Lichtenberg, ”Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc., New York (1994)

    Google Scholar 

  13. R.H. Cohen and T.D. Rognlien, Electron kinetics in radio-frequency magnetic fields of inductive plasma sources, Plasma Sources Sci. Techn. 5: 442 (1996).

    Article  ADS  Google Scholar 

  14. Y. M. Aliev, I. D. Kaganovich, and H. Schlüter, Collisionless electron heating in RF gas discharges: I Quasilinear theory, in this book

    Google Scholar 

  15. R.Z. Sagdeev, D.A. Usikov and G.M. Zaslavsky, “Nonlinear Physics from the Pendulum to Turbulence and Chaos” Chur: Harwood Academic Publishers (1988).

    MATH  Google Scholar 

  16. A. P. Dmitriev and L. D. Tsendin, Distribution functions of electrons scattered with a large energy loss in an electric field, Sov. Phys JETP 54: 1071 (1981).

    Google Scholar 

  17. V. A. Godyak and R. B. Piejak, Abnormally low electron energy and heating-mode transition in a low-pressure Argon rf discharge at 13.56 MHz, Phys. Rev. Lett. 65: 996 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Buddemeier, U., Kaganovich, I.D. (2002). Collisionless Electron Heating in RF Gas Discharges: II. The Role of Collisions and Non-linear Effects. In: Kortshagen, U., Tsendin, L.D. (eds) Electron Kinetics and Applications of Glow Discharges. NATO Science Series: B, vol 367. Springer, Boston, MA. https://doi.org/10.1007/0-306-47076-4_17

Download citation

  • DOI: https://doi.org/10.1007/0-306-47076-4_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45822-4

  • Online ISBN: 978-0-306-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics