Skip to main content

Collisionless Electron Heating in RF Gas Discharges: I. Quasilinear Theory

  • Chapter
Electron Kinetics and Applications of Glow Discharges

Part of the book series: NATO Science Series: B ((NSSB,volume 367))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.A. Godyak, Statistical heating of electrons at an oscillating plasma boundary, Sov. Phys. Tech. Phys. 16: 1073 (1972).

    ADS  Google Scholar 

  2. M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, John Wiley & Sons Inc., New York (1994)

    Google Scholar 

  3. A.F. Alexandrov, L.S. Bogdankevich and A.A. Rukhadze, ”Principles of Plasma Electrodynamics”, Springer Series in Electrophysics vol. 9, Berlin-Heidelberg-New York: Springer (1984).

    Google Scholar 

  4. A.A. Galeev and R.Z. Sagdeev, “Nonlinear Plasma Theory”, in: M.A. Leontovich (ed.), Reviews of Plasma Physics vol. 7, New York-London: Consultants Bureau, (1976).

    Google Scholar 

  5. A.A. Vedenov, “Theory of a Weakly Turbulent Plasma”, in: M.A. Leontovich (ed.), Reviews of Plasma Physics vol. 3, New York-London: Consultants Bureau, (1967).

    Google Scholar 

  6. A.H. Vedenov, E.P. Velikhov and R. Sagdeev, Nonlinear oscillations of rare plasma, Nucl. Fusion 1: 82 (1961).

    Article  Google Scholar 

  7. W.E. Drummond and D. Pines, Nucl. Fusion Suppl. 3: 1049 (1962).

    Google Scholar 

  8. L.M. Kovrizhnykh and A. Sakharov, Electron acceleration in the field of plasma resonance, Sov. J. Plasma Phys. 5: 470 (1979).

    Google Scholar 

  9. V.V. Vas’kov, A.B. Gurevich, Ja.S. Dimant, Multiply acceleration of electrons in plasma resonance, Sov. Phys. JETP 57: 310 (1983).

    Google Scholar 

  10. Yu.R. Alanakyan, Fermi acceleration and rf particle heating, Sov. Phys. Tech. Phys. 24: 611 (1979).

    Google Scholar 

  11. Yu.R. Alanakyan, Electron energy distribution in a free-streaming rf plasma column, Sov, J. Plasma Phys. 5: 504 (1979).

    Google Scholar 

  12. C.G. Goedde, A.J. Lichtenberg and M.A. Lieberman, Self-consistent stochastic electron heating in radio frequency discharges, J. Appl. Phys. 64: 4375 (1988).

    Article  ADS  Google Scholar 

  13. V.A. Godyak and R.B. Piejak, Abnormally low electron energy and heating-mode transition in a low-pressure Argon rf discharge at 13.56 MHz, Phys. Rev. Lett. 65: 996 (1990).

    Article  ADS  Google Scholar 

  14. U. Buddemeier, U. Kortshagen and I. Pukropski, On the efficiency of the electron sheath heating in a capacitively coupled radio frequency discharges in the weakly collisional regime, J. Appl. Phys. Lett. 67: 191 (1995).

    Article  ADS  Google Scholar 

  15. Yu.M. Aliev, V.Yu. Bychenkov, A.V. Maximov and H. Schlüter, High energy electron generation in surface-wave produced plasmas, Plasma Sources Sci. Technol. 1: 126 (1992).

    Article  ADS  Google Scholar 

  16. Yu.M. Aliev, Some aspects of nonlinear theory of ionizing surface plasma waves, in: CM. Ferreira and M. Moisan (eds.), ”Microwave Discharges: Fundamentals and Applications”, NATO ASI Ser. B: Phys. vol. 302 (Plenum, 1993), 105–115.

    Google Scholar 

  17. Yu.M. Aliev, A.V. Maximov, U. Kortshagen, H, Schlüter and A. Shivarova, Modeling of microwave discharges in the presence of plasma resonances, Phys. Rev. E 51: 6091 (1995).

    Article  ADS  Google Scholar 

  18. I.B. Bernstein and T. Holstein, Electron energy distribution in stationary discharges, Phys. Rev. 94: 1475 (1954).

    Article  ADS  MATH  Google Scholar 

  19. L.D. Tsendin, Electron kinetics in non-uniform glow discharge plasma, Plasma Sources Sci. Technol. 4: 200 (1995).

    Article  ADS  Google Scholar 

  20. I.D. Kaganovich, V.I. Kolobov, L.D. Tsendin, Stochastic electron heating in bounded radio-frequency plasmas, J. Appl. Phys. Lett. 69: 3818 (1996).

    Article  ADS  Google Scholar 

  21. R.H. Cohen and T.D. Rognlien, Electron kinetics in radio-frequency magnetic fields of inductive plasma sources, Plasma Sources Sci. Techn. 5: 442 (1996).

    Article  ADS  Google Scholar 

  22. V. Vahedi, M.A. Lieberman, G. Di Peso, T.D. Rognlien and D. Hewett, Analytic model of power deposition in inductively coupled plasma sources, J. Appl. Phys. 78: 1446 (1995).

    Article  ADS  Google Scholar 

  23. M.J. Fish, Confining a tokamak plasma with rf-driven currents, Phys. Rev. Lett. 41: 873 (1978).

    Article  ADS  Google Scholar 

  24. I.D. Kaganovich and L.D. Tsendin, The space-time-averaging procedure and modeling of the rf discharge, part II: model of collisional low-pressure rf discharge, IEEE Trans. Plasma Sci. 20: 66 (1992).

    Article  ADS  Google Scholar 

  25. U. Buddemeier, I. Kaganovich, Collisionless electron heating in RF gas discharges. II. Role of collisions and non-linear effects, in this book.

    Google Scholar 

  26. A.I. Akhiezer and A.S. Bakai, Theory of stochastic particle acceleration, Sov. Phys. Dokl. 16: 1065 (1972).

    ADS  Google Scholar 

  27. S.M. Dikman and B.E. Meierovich, Theory of the anomalous skin effect in a plasma with a diffuse boundary, Sov. Phys.-JEPT, vol. 37, 835 (1973).

    ADS  Google Scholar 

  28. M.M. Turner, Collisionless electron heating in a inductively coupled discharge, Phys. Rev. Lett. 71: 1844 (1993).

    Article  ADS  Google Scholar 

  29. V.A. Godyak, R.B. Piejak and B.M. Alexandrovich, Electrical characteristics and electron heating mechanism of an inductively coupled argon discharge, Plasma Sources Sci. Technol. 3: 169 (1994).

    Article  ADS  Google Scholar 

  30. R.Z. Sagdeev, D.A. Usikov and G.M. Zaslavsky, “Nonlinear Physics from the Pendulum to Turbulence and Chaos” Chur: Harwood Academic Publishers (1988).

    MATH  Google Scholar 

  31. M.A. Lieberman, B.E. Meierovich and L.P. Pitaevski, Anomalous skin effect in a plasma with a diffuse boundary, Sov. Phys. JEPT 35: 904 (1972).

    ADS  Google Scholar 

  32. I.D. Kaganovich and L.D. Tsendin, Low pressure rf discharge in the free flight regime, IEEE Trans. Plasma Sci. 20: 86 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Aliev, Y.M., Kaganovich, I.D., Schlüter, H. (2002). Collisionless Electron Heating in RF Gas Discharges: I. Quasilinear Theory. In: Kortshagen, U., Tsendin, L.D. (eds) Electron Kinetics and Applications of Glow Discharges. NATO Science Series: B, vol 367. Springer, Boston, MA. https://doi.org/10.1007/0-306-47076-4_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-47076-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45822-4

  • Online ISBN: 978-0-306-47076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics