Advertisement

A Hydrodynamic Description of Electrons in a Space-Time Varying Electric Field

Chapter
Part of the NATO Science Series: B book series (NSSB, volume 367)

Keywords

Rate Coefficient Electron Attachment Hydrodynamic Description Negative Differential Conductivity Ionization Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. P. Raizer. “Gas Discharge Physics”, Springer, Berlin (1991).Google Scholar
  2. 2.
    L. G. H. Huxley and R. W. Crompton. “The Diffusion and Drift of Electrons in Gases”, Wiley, New York (1974).Google Scholar
  3. 3.
    K. Kumar, H. R. Scullerud, and R. E. Robson, Kinetic theory of charged particle swarms in neutral gases, Aust. J. Phys. 33: 343 (1980).ADSGoogle Scholar
  4. 4.
    N. L. Aleksandrov, A. M. Konchakov, A. P. Napartovich and A. N. Starostin, The transport phenomena of charged particles in a weakly ionized gas, in “Khimiya Plazmy”, B. M. Smirnov, ed., No. 11, Energoatomizdat, Moscow (1984).Google Scholar
  5. 5.
    G. G. Lister, Low-pressure gas discharge modelling, J. Phys. D: Appl. Phys. 25: 1649 (1992).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    U. Kortshagen, C. Busch, and L. D. Tsendin, On simplifying approaches to the solution of the Boltzmann equation in spatially inhomogeneous plasmas, Plasma Sources: Sci. Technol. 5:1 (1996).CrossRefADSGoogle Scholar
  7. 7.
    V. I. Kolobov and V. A. Godyak, Nonlocal electron kinetics in collisional gas discharge plasmas, IEEE Trans. Plasma Sci. 23:503 (1995).CrossRefADSGoogle Scholar
  8. 8.
    L. D. Tsendin, Electron kinetics in non-uniform glow discharge plasmas, Plasma Sources: Sci. Technol. 4:200 (1995).CrossRefADSGoogle Scholar
  9. 9.
    N. L. Aleksandrov, A. P. Napartovich, and A. N. Starostin, Transport equations in a nonequilibrium weakly ionized plasma, Sov. J. Plasma Phys. 6:618 (1980).Google Scholar
  10. 10.
    I. P. Shkarofsky, T. W. Johnston, and M. P. Bachynski. “The Particle Kinetics of Plasmas”, Addison Wesley, Reading MA (1966).Google Scholar
  11. 11.
    S. R. Hunter and L. G. Christophorou, Electron motion in low-and high-pressure gases, in: “Electron-Molecule Interactions and Their Applications”, vol 2, L. G. Christophorou, ed., Academic, Orlando FL (1984) p. 89.Google Scholar
  12. 12.
    N. L. Aleksandrov and E. E. Son, The electron energy distribution and kinetic coefficients in gases in an electric field, in “Khimiya Plasmy”, B. M. Smirnov, ed, No. 7, Atomizdat, Moscow (1980).Google Scholar
  13. 13.
    J. H. Parker and J. J. Lowke, Theory of electron diffusion parallel to electric fields. I. Theory, Phys. Rev. 181:290 (1969).ADSGoogle Scholar
  14. 14.
    J. J. Lowke and J. H. Parker, Theory of electron diffusion parallel to electric fields. II. Application to real gases, Phys. Rev. 181:302 (1969).CrossRefADSGoogle Scholar
  15. 15.
    H. R. Scullerud, Longitudinal diffusion of electrons in electrostatic fields in gases, J. Phys, B: Atom. Mol. Phys. 2:696 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Timofeev, Hydrodynamic transport equations for a weakly ionized gas discharge plasma, Sov. Phys. Tech. Phys. 15:140 (1970).ADSGoogle Scholar
  17. 17.
    N. L. Aleksandrov and A. M. Konchakov, Electron transport coefficients in a weakly ionized nonequilibrium plasma, Sov. J. Plasma. Phys. 7:103 (1981).Google Scholar
  18. 18.
    N. L. Aleksandrov and A. M. Konchakov, Electron transport coefficients in a weakly ionized nonequilibrium plasma in the CO2:N2 mixtures, High Temp. (USSR) 21:1 (1983).Google Scholar
  19. 19.
    N. L. Aleksandrov and I. V. Kochetov, Electron transport parameters in a weakly ionized gas with vibrationally excited molecules, J. Phys. D: Appl. Phys. 26:387 (1993).CrossRefADSGoogle Scholar
  20. 20.
    N. L. Aleksandrov and I. V. Kochetov, Electron transport coefficients in a weakly ionized plasma with vibrationally excited molecules, Sov. J. Plasma Phys. 18:828 (1992).Google Scholar
  21. 21.
    N. L. Aleksandrov and I. V. Kochetov, Electron rate coefficients in gases under non-uniform field and electron density conditions, J. Phys. D: Appl. Phys. 29:1476 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    N. L. Aleksandrov, N. A. Dyatko, and I. V. Kochetov, Rate of inelastic electron processes in a weakly ionized plasma in a nonstationary electric field, Plasma Phys. Rep. 21:763 (1995).ADSGoogle Scholar
  23. 23.
    N. L. Aleksandrov, E. M. Bazelyan, I. V. Kochetov, and A. M. Okhrimovskyy, The rate of inelastic electron processes in air in a space-time varying electric field, Plasma Phys. Rep. (in press).Google Scholar
  24. 24.
    N. L. Aleksandrov and I. V. Kochetov, Longitudinal diffusion of electrons in weakly ionized gas with Coulomb collisions, J. Phys. D: Appl. Phys. 24:2164 (1991).CrossRefADSGoogle Scholar
  25. 25.
    T. J. Moratz, L. C. Pitchford, and J. N. Bardsley, Electron swarm behavior in nonuniform fields in nitrogen, J. Appl. Phys. 61:2146 (1987).CrossRefADSGoogle Scholar
  26. 26.
    N. Sato and H. Tagashira, Monte Carlo simulation of the electron swarm in nitrogen under non-uniform field conditions, J. Phys. D:Appl. Phys. 18:2451 (1985).CrossRefADSGoogle Scholar
  27. 27.
    Jianfen Liu and G. R. Govinda Raju, The nonequilibrium behavior of electron swarms in nonuniform field in SF6, IEEE Trans. Plasma Sci. 20:515 (1992).CrossRefADSGoogle Scholar
  28. 28.
    A. B. Wedding and L. J. Kelly, Observation of spatial variations in the energy distribution function for steady-state Townsend discharges, Aust. J. Phys. 42:101 (1989).ADSGoogle Scholar
  29. 29.
    V. A. Shveigert, Thermocurrent instability of a glow discharge in helium, Sov. J. Plasma Phys. 14:739 (1988).Google Scholar
  30. 30.
    Yu. S. Akishev, N. A. Dyatko, I. N. Lopatkin, I. V. Minina, A. P. Napartovich, and I. V. Kochetov, Thermocurrent instability of a glow discharge, in: “Proc. 7th All-Union Conf. on the Physics of Low-Temperature Plasmas”, p. 261, Fan, Tashkent (1987).Google Scholar
  31. 31.
    N. L. Aleksandrov and I. V. Kochetov, Stability of a nonequilibrium weakly ionized plasma with Coulomb collisions, Sov. J. Plasma Phys. 17:430 (1991).Google Scholar
  32. 32.
    N. L. Aleksandrov, I. V. Kochetov, and A. M. Konchakov, Instability induced by electron transport in a weakly ionized plasma in E ✖ H fields, J. Phys. D: Appl. Phys. 28:1072 (1995).CrossRefADSGoogle Scholar
  33. 33.
    A. P. Napartovich and A. N. Starostin, Stability of gas-discharge plasma at high pressures, in: “Khimiya Plazmy”, B. M. Smirnov, ed., No. 6, Atomizdat, Moscow (1979) p. 153.Google Scholar
  34. 34.
    N. L. Aleksandrov and A. M. Okhrimovskyy, Stability of a weakly ionized ion-ion plasma immersed in a strong electric field, Plsma Phys. Rep. 23:77 (1997).ADSGoogle Scholar
  35. 35.
    V. L. Nighan, Stability of molecular laser discharges at high energies, in: “Principles of Laser Plasma”, G. Bekefi, ed., Wiley, New York (1976).Google Scholar
  36. 36.
    N. L. Aleksandrov and A. P. Napartovich, Phenomena in gases and plasmas with negative ions, Phys.-Usp. 36:107 (1993).CrossRefADSGoogle Scholar
  37. 37.
    F. I. Vysikailo, Ambipolar drift of a weakly ionized plasma induced by the nonlocality of electron distribution function, Sov. J. Plasma Phys. 13:111 (1987).Google Scholar
  38. 38.
    N. L. Aleksandrov, I. V. Kochetov, D. A. Mazalov, A. P. Napartovich, A. F. Pal’, V. V. Pichugin, and A. N. Starostin, Electron transport coefficients and attachment instability dynamics in a, gas-discharge plasma, Sov. J. Plasma Phys. 18:758 (1992).Google Scholar
  39. 39.
    A. J. Davies, Discharge simulation, IEE Proc. A 113:217 (1986).ADSGoogle Scholar
  40. 40.
    N. L. Aleksandrov, A. E. Bazelyan, E. M. Bazelyan, and I. V. Kochetov, Modeling of long streamers in atmospheric-pressure air, Plasma Phys. Rep. 21:57 (1995).ADSGoogle Scholar
  41. 41.
    E. M. Bazelyan and Yu. P. Raizer. “Spark Discharge”, CRC, New York (1997).Google Scholar
  42. 42.
    E. E. Kunhardt and Y. Tzeng, Development of an electron avalanche and its transition into streamers, Phys. Rev. A 38:1410 (1988).CrossRefADSGoogle Scholar
  43. 43.
    J.-M. Guo and C.-H. J. Wu, Comparisons of multidimensional non-equilibrium and equilibrium fluid and Monte Carlo models for streamers, J. Phys. D: Appl. Phys. 26:487 (1993).CrossRefADSGoogle Scholar
  44. 44.
    J.-M. Guo and C.-H. J. Wu, Two-dimensional nonequilibrium fluid models for streamers, IEEE Trans. Plasma Sci. 21:684 (1993).CrossRefADSGoogle Scholar
  45. 45.
    N. L. Aleksandrov and E. M. Bazelyan, Simulation of long-streamer propagation in air at atmospheric pressure, J. Phys. D: Appl. Phys. 29:740 (1996).ADSCrossRefGoogle Scholar
  46. 46.
    N. L. Aleksandrov and A. M. Konchakov, Spectrum of the electron cyclotron resonance in an unsteady weakly ionized plasma, Fiz. Plazmy 13:1390 (1987).Google Scholar
  47. 47.
    N. L. Aleksandrov, A. P. Napartovich and A. N. Starostin, Dielectric permittivity of weakly ionized plasmas in the field of an electromagnetic wave of variable amplitude, in “Proceeding of the XV Int. Conf. on Phenom. Ionized Gases”, L. I. Kiselevskiy, ed., Institute of Physics BAS, Minsk (1981).Google Scholar
  48. 48.
    N. L. Aleksandrov, A. P. Napartovich, and A. M. Okhrimovskyy, Ion transport in gases and weakly ionized nonequilibrium plasma in a variable electric field, JETP 82:214 (1996).ADSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Department of Physical MechanicsMoscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations