Skip to main content

Universal Fluctuations in Dirac Spectra

  • Chapter
Book cover New Developments in Quantum Field Theory

Part of the book series: NATO Science Series: B: ((NSSB,volume 366))

  • 271 Accesses

Conclusions

We have argued that there is an intimate relation between correlations of Dirac eigenvalues and the breaking of chiral symmetry. In the chiral limit, the fermion determinant suppresses gauge field configurations with small Dirac eigenvalues. Correlations counteract this suppression, and are a necessary ingredient of chiral symmetry breaking. From the study of eigenvalue correlations in strongly interacting systems, we have concluded that they are described naturally with by Random Matrix Theory with the global symmetries of the physical system. In QCD, this led to the introduction of chiral Random Matrix Theories. They provided us with an analytical understanding of the statistical properties of the eigenvalues on the scale of a typical level spacing. In particular, impressive agreement between lattice QCD and chiral Random Matrix Theory was found for the microscopic spectral density and for spectral correlations in the bulk of the spectrum. An extension of this model to nonzero chemical potential explains some intriguing properties of previously obtained lattice QCD Dirac spectra and instanton liquid Dirac spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. DeTar, Quark-gluon plasma in numerical simulations of QCD, in Quark gluon plasma 2, R. Hwa ed., World Scientific 1995.

    Google Scholar 

  2. A. Ukawa, Nucl. Phys. Proc. Suppl. 53 (1997) 106.

    Article  ADS  Google Scholar 

  3. A. Smilga, Physics of thermal QCD, hep-ph/9612347.

    Google Scholar 

  4. E. Shuryak, Comments Nucl. Part. Phys. 21 (1994) 235.

    Google Scholar 

  5. C. Bernard, T. Blum, C. DeTar, S. Gottlieb, U. Heller, J. Hetrick, K. Rummukainen, R. Sugar, D. Toussaint and M. Wingate, Phys. Rev. Lett. 78 (1997) 598.

    Article  ADS  Google Scholar 

  6. T. Banks and A. Casher, Nucl. Phys. B169 (1980) 103.

    Article  MathSciNet  ADS  Google Scholar 

  7. O. Bohigas, M. Giannoni, Lecture notes in Physics 209 (1984) 1; O. Bohigas, M. Giannoni and C. Schmit, Phys. Rev. Lett. 52 (1984) 1.

    Article  MathSciNet  ADS  Google Scholar 

  8. H. Leutwyler and A. Smilga, Phys. Rev. D46 (1992) 5607.

    MathSciNet  ADS  Google Scholar 

  9. J. Gasser and H. Leutwyler, Phys. Lett. l88B (1987) 477.

    ADS  Google Scholar 

  10. E.V. Shuryak and J.J.M. Verbaarschot, Nucl. Phys. A560 (1993) 306.

    ADS  Google Scholar 

  11. S. Nishigaki, Phys. Lett. 387 B (1996) 707.

    MathSciNet  Google Scholar 

  12. G. Akemann, P. Damgaard, U. Magnea and S. Nishigaki, Nucl. Phys. B 487[FS] (1997) 721.

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Brézin, S. Hikami and A. Zee, Nucl. Phys. B464 (1996) 411.

    Article  ADS  Google Scholar 

  14. T. Guhr and T. Wettig, Universal spectral correlations of the Dirac operator at finite temperature, hep-th/9704055, Nucl. Phys. B (in press).

    Google Scholar 

  15. A.D. Jackson, M.K. Sener and J.J.M. Verbaarschot, Nucl. Phys. B479 (1996) 707.

    Article  ADS  Google Scholar 

  16. A.D. Jackson, M.K. Sener and J.J.M. Verbaarschot, Universality of correlation functions in random matrix models of QCD, hep-th/9704056, Nucl. Phys. B (in press).

    Google Scholar 

  17. J.J.M. Verbaarschot, Phys. Lett. B368 (1996) 137.

    MathSciNet  ADS  Google Scholar 

  18. S. Chandrasekharan, Nucl. Phys. Proc. Suppl. 42 (1995) 475; S. Chandrasekharan and N. Christ, Nucl. Phys. Proc. Suppl. 42 (1996) 527; N. Christ, Lattice 1996.

    Article  ADS  Google Scholar 

  19. T. Kalkreuter, Phys. Lett. B276 (1992) 485; Phys. Rev. D48 (1993) 1; Comp. Phys. Comm. 95 (1996) 1.

    MathSciNet  ADS  Google Scholar 

  20. M.E. Berbenni-Bitsch, S. Meyer, A. Schäfer, J.J.M. Verbaarschot, and T. Wettig, Microscopic Universality in the spectrum of the lattice Dirac operator, hep-lat/9704018.

    Google Scholar 

  21. A. Pandey, Ann. Phys. 134 (1981) 119.

    ADS  Google Scholar 

  22. M.A. Halasz and J.J.M. Verbaarschot, Phys. Rev. Lett. 74 (1995) 3920.

    Article  ADS  Google Scholar 

  23. M.A. Halasz, T. Kalkreuter and J.J.M. Verbaarschot, Nucl. Phys. Proc. Suppl. 53 (1997) 266.

    Article  ADS  Google Scholar 

  24. T. Guhr, A. Müller-Groeling and H.A. Weidenmüller, Random Matrix Theories in quantum physics: Common concepts, cond-mat/9707301, Phys. Rep. (in press).

    Google Scholar 

  25. R. Haq, A. Pandey and O. Bohigas, Phys. Rev. Lett. 48 (1982) 1086.

    Article  ADS  Google Scholar 

  26. C. Ellegaard, T. Guhr, K. Lindemann, H.Q. Lorensen, J. Nygard and M. Oxborrow, Phys. Rev. Lett. 75 (1995) 1546.

    Article  ADS  Google Scholar 

  27. S. Deus, P. Koch and L. Sirko, Phys. Rev. E 52 (1995) 1146; H. Gräf, H. Harney, H. Lengeler, C. Lewenkopf, C. Rangacharyulu, A. Richter, P. Schardt and H.A. Weidenmüller, Phys. Rev. Lett. 69 (1992) 1296

    ADS  Google Scholar 

  28. T. Ericson, Phys. Rev. Lett. 5 (1960) 430.

    Article  ADS  Google Scholar 

  29. H.A. Weidenmüller, Ann. Phys. (N.Y.) 158 (1984) 78; in Proceedings of T. Ericson’s 60th birthday.

    Article  Google Scholar 

  30. Y. Imry, Europhysics Lett. 1 (1986) 249; B.L. Altshuler, P.A. Lee and R.A. Webb (eds.), Mesoscopic Phenomena in Solids, North-Holland, New York, 1991; S. Iida, H.A. Weidenmüller and J. Zuk, Phys. Rev. Lett. 64 (1990) 583; Ann. Phys. (N.Y.) 200 (1990) 219; C.W.J. Beenakker, Rev. Mod. Phys. 69 (1997) 731.

    Article  ADS  Google Scholar 

  31. P.W. Anderson, Phys. Rev. 109 (1958) 1492.

    Article  ADS  Google Scholar 

  32. H. Sommers, A. Crisanti, H. Sompolinsky and Y. Stein, Phys. Rev. Lett. 60 (1988) 1895.

    Article  MathSciNet  ADS  Google Scholar 

  33. D. Gross and E. Witten, Phys. Rev. D21 (1980) 446; S. Chandrasekharan, Phys. Lett. B395 (1997) 83.

    ADS  Google Scholar 

  34. P. Di Francesco, P. Ginsparg, and J. Zinn-Justin, Phys, Rep. 254 (1995) 1.

    Article  ADS  Google Scholar 

  35. M. Stephanov, Phys. Rev. Lett. 76 (1996) 4472.

    Article  ADS  Google Scholar 

  36. Y. Fyodorov, B. Khoruzhenko and H. Sommers, Almost-Hermitian Random Matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics, cond-mat/9703152.

    Google Scholar 

  37. M.A. Nowak, this proceedings.

    Google Scholar 

  38. C.N. Yang and T.D. Lee, Phys. Rev. 87 (1952) 104, 410.

    Article  ADS  Google Scholar 

  39. V. Matteev and R. Shrock, J. Phys. A: Math. Gen. 28 (1995) 5235.

    Article  ADS  Google Scholar 

  40. J. Vink, Nucl. Phys, B323 (1989) 399.

    Article  ADS  Google Scholar 

  41. I. Barbour, A. Bell, M. Bernaschi, G. Salina and A. Vladikas, Nucl. Phys. B386 (1992) 683.

    Article  ADS  Google Scholar 

  42. J. Osborn and J.J.M. Verbaarschot, in preparation.

    Google Scholar 

  43. A. Smilga and J.J.M. Verbaarschot, Phys. Rev. D51 (1995) 829.

    MathSciNet  ADS  Google Scholar 

  44. M.A. Halasz and J.J.M. Verbaarschot, Phys. Rev. D52 (1995) 2563.

    ADS  Google Scholar 

  45. F. Dyson and M. Mehta, J. Math. Phys. 4 (1963) 701.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. M. Mehta, Random Matrices, Academic Press, San Diego, 1991.

    MATH  Google Scholar 

  47. A.M. Odlyzko, Math. Comput. 48 (1987) 273.

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, Am. Math. Soc., Providence RI, 1992.

    Google Scholar 

  49. G. Hackenbroich and H.A. Weidenmüller, Phys. Rev. Lett. 74 (1995) 4118.

    Article  ADS  Google Scholar 

  50. V. Freilikher, E. Kanzieper and I. Yurkevich, Phys. Rev. E53 (1996) 2200.

    MathSciNet  ADS  Google Scholar 

  51. B. Eynard, Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices, cond-mat/9707005.

    Google Scholar 

  52. E. Brézin and A. Zee, Nucl. Phys. B402 (1993) 613.

    Article  ADS  Google Scholar 

  53. N. Deo, Orthogonal polynomials and exact correlation functions for two cut random matrix models, cond-mat/9703136.

    Google Scholar 

  54. P. Zinn-Justin, Universality of correlation functions of hermitean random matrices in an external field, cond-mat/9705044; Nucl. Phys. B497 (1997) 725.

    Google Scholar 

  55. E. Brézin and S. Hikami, An extension of level spacing universality, cond-mat/9702213.

    Google Scholar 

  56. T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey and S.S.M. Wong, Rev. Mod. Phys. 53 (1981) 385.

    Article  MathSciNet  ADS  Google Scholar 

  57. J.J.M. Verbaarschot and M.R. Zirnbauer, Ann. Phys. (N.Y.) 158 (1984) 78.

    Article  MathSciNet  ADS  Google Scholar 

  58. J. Ambjorn, J. Jurkiewicz and Y. Makeenko, Phys. Lett. B251 (1990) 517.

    MathSciNet  ADS  Google Scholar 

  59. J. Ambjorn and G. Akemann, J. Phys. A29 (1996) L555; Nucl. Phys. B482 (1996) 403.

    Google Scholar 

  60. C.W.J. Beenakker, Nucl.Phys. B422 (1994) 515.

    Article  ADS  Google Scholar 

  61. J.J.M. Verbaarschot, H.A. Weidenmüller and M.R. Zirnbauer, Ann. Phys. (N.Y.) 153 (1984) 367.

    Article  ADS  Google Scholar 

  62. E. Brézin and A. Zee, Nucl. Phys. B453 (1995) 531.

    Article  ADS  Google Scholar 

  63. M. Berry, Proc. Roy. Soc. London A 400 (1985) 229.

    MathSciNet  MATH  ADS  Google Scholar 

  64. E. Kanzieper and V. Freilikher, Phys. Rev. Lett. 78 (1997) 3806.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. E. Brézin and J. Zinn-Justin, Phys. lett. B288 (1992) 54.

    ADS  Google Scholar 

  66. S. Higuchi, C. Itoi, S.M. Nishigaki and N. Sakai, Renormalization group approach to multiple arc random matrix models, hep-th/9612237.

    Google Scholar 

  67. A.V. Andreev, O. Agam, B.D. Simons and B.L. Altshuler, Nucl. Phys. B482 (1996) 536.

    Article  MathSciNet  ADS  Google Scholar 

  68. A. Altland and M. Zirnbauer, Phys. Rev. Lett. 77 (1996) 4536.

    Article  ADS  Google Scholar 

  69. T. Schäfer and E. Shuryak, Instantons in QCD, hep-ph/9610451, Rev. Mod. Phys. (1997).

    Google Scholar 

  70. D.I. Diakonov and V.Yu. Petrov, Nucl. Phys. B272 (1986) 457.

    Article  ADS  Google Scholar 

  71. J.J.M. Verbaarschot, Phys. Rev. Lett. 72 (1994) 2531; Phys. Lett. B329 (1994) 351.

    Article  MathSciNet  ADS  Google Scholar 

  72. J.J.M. Verbaarschot and I. Zahed, Phys. Rev. Lett. 70 (1993) 3852.

    Article  ADS  Google Scholar 

  73. J.J.M. Verbaarschot, Nucl. Phys. Proc. Suppl. 53 (1997) 88.

    Article  ADS  Google Scholar 

  74. M. Peskin, Nucl. Phys. B175 (1980) 197; S. Dimopoulos, Nucl. Phys. B168 (1980) 69; M. Vysotskii, Y. Kogan and M. Shifman, Sov. J. Nucl. Phys. 42 (1985) 318; D.I. Diakonov and V.Yu. Petrov, Lecture notes in physics, 417, Springer 1993.

    Article  ADS  Google Scholar 

  75. A. Altland, M.R. Zirnbauer, Phys. Rev. Lett. 76 (1996) 3420; Novel Symmetry Classes in Mesoscopic Normal-Superconducting Hybrid Structures, cond-mat/9602137.

    Article  ADS  Google Scholar 

  76. M.R. Zirnbauer, J. Math. Phys. 37 (1996) 4986; F.J. Dyson, Comm. Math. Phys. 19 (1970) 235.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  77. D. Fox and P. Kahn, Phys. Rev. 134 (1964) B1152; (1965) 228.

    Google Scholar 

  78. B. Bronk, J. Math. Phys. 6 (1965) 228.

    Article  ADS  Google Scholar 

  79. A.V. Andreev, B.D. Simons, and N. Taniguchi, Nucl. Phys B432 [FS] (1994) 487.

    Article  MathSciNet  ADS  Google Scholar 

  80. F. Dyson, J. Math. Phys. 13 (1972) 90.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  81. G. Mahoux and M. Mehta, J. Phys. I France I (1991) 1093.

    Article  MathSciNet  Google Scholar 

  82. T. Nagao and M. Wadati, J. Phys. Soc. Japan 60 (1991) 2998; J. Phys. Soc. Jap. 60 (1991) 3298; J. Phys. Soc. Jap. bf 61 (1992) 78; J. Phys. Soc. Jap. bf 61 (1992) 1910. 61 (1992) 78, 1910.

    MathSciNet  ADS  Google Scholar 

  83. J.J.M. Verbaarschot, Nucl. Phys. B426 (1994) 559.

    Article  MathSciNet  ADS  Google Scholar 

  84. T. Nagao and P.J. Forrester, Nucl. Phys. B435 (1995) 401.

    Article  MathSciNet  ADS  Google Scholar 

  85. A.D. Jackson, M.K. Sener and J.J.M. Verbaarschot, Phys. Lett. B387 (1996) 355.

    MathSciNet  ADS  Google Scholar 

  86. S. Nishigaki, this proceedings.

    Google Scholar 

  87. A.D. Jackson and J.J.M. Verbaarschot, Phys. Rev. D53 (1996) 7223.

    ADS  Google Scholar 

  88. M. Stephanov, Phys. Lett. B275 (1996) 249; Nucl. Phys. Proc. Suppl. 53 (1997) 469.

    ADS  Google Scholar 

  89. M.A. Nowak, G. Papp and I. Zahed, Phys. Lett. B389 (1996) 137.

    ADS  Google Scholar 

  90. A. Zee, Nucl. Phys. B474 (1996) 726.

    Article  MathSciNet  ADS  Google Scholar 

  91. T. Guhr, J. Math. Phys. 32 (1991) 336.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  92. C. Tracy and H. Widom, Comm. Math. Phys. 161 (1994) 289.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  93. T. Guhr and T. Wettig, J. Math. Phys. 37 (1996) 6395.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  94. F.A. Berezin and F.I. Karpelevich, Doklady Akad. Nauk SSSR 118 (1958) 9.

    MATH  Google Scholar 

  95. D. Hofstadter, Phys. Rev. B14 (1976) 2239.

    ADS  Google Scholar 

  96. K. Slevin and T. Nagao, Phys. Rev. Lett. 70 (1993) 635.

    Article  ADS  Google Scholar 

  97. J. Kelner and J.J.M. Verbaarschot, in preparation.

    Google Scholar 

  98. J. Osborn and J.J.M. Verbaarschot, in progress.

    Google Scholar 

  99. T. Ivanenko, Study of Instanton Physics in lattice QCD, Thesis, Massachusetts Institute of Technology, 1997.

    Google Scholar 

  100. W. Bardeen, A. Duncan, E. Eichten, G. Hockney and H. Thacker, Light quarks, zero modes, and exceptional configurations, hep-lat/9705008; W. Bardeen, A. Duncan, E. Eichten and H. Thacker, Quenched approximation artifacts: a detailed study in two-dimensional QED, hep-lat/9705002.

    Google Scholar 

  101. C.R. Gattringer, I. Hip and C.B. Lang, Topological charge and the spectrum of the fermion matrix in lattice QED in two-dimensions, hep-lat/9707011.

    Google Scholar 

  102. K. Jansen, C. Liu, H. Simma and D. Smith, Nucl. Phys. Proc. Supp. 53, 262 (1997).

    Article  ADS  Google Scholar 

  103. S. Hands and M. Teper, Nucl. Phys. B347 (1990) 819.

    Article  ADS  Google Scholar 

  104. J. Cullum and R.A. Willoughby, J. Comp. Phys. 44 (1981) 329.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  105. J. Jurkiewicz, M.A. Nowak and I. Zahed, Nucl. Phys. B478 (1996) 605.

    Article  ADS  Google Scholar 

  106. J.J.M. Verbaarschot, Nucl. Phys. B427 (1994) 534.

    Article  MathSciNet  ADS  Google Scholar 

  107. T. Wettig, T. Guhr, A. Schäfer and H. Weidenmüller, The chiral phase transition, random matrix models, and lattice data, hep-ph/9701387.

    Google Scholar 

  108. P. Forrester, Nucl. Phys. B[FS]402 (1993) 709.

    Article  MathSciNet  ADS  Google Scholar 

  109. T. Wettig, private communication 1997.

    Google Scholar 

  110. T. Jolicoeur and A. Morel, Nucl. Phys. B262 (1985) 627.

    Article  ADS  Google Scholar 

  111. M. Göckeler, R. Horsley, E. Laermann, P. Rakow, G. Schierholtz, R. Sommer and U.-J. Wiese, Nucl. Phys. B334 (1990) 527.

    Article  ADS  Google Scholar 

  112. T. Wettig, A. Schäfer and H. Weidenmüller, Phys. Lett. B367 (1996) 28.

    ADS  Google Scholar 

  113. M.A. Halasz, A.D. Jackson and J.J.M. Verbaarschot, Phys. Lett. B395 (1997) 293; Fermion determinants in matrix models of QCD at nonzero chemical potential, hep-lat/9703006, Phys. Rev. D (in press).

    MathSciNet  ADS  Google Scholar 

  114. J. Feinberg and A. Zee, Non-Hermitean Random Matrix Theory: method of hermitization, cond-mat/9703118; Nongaussian nonhermitean random matrix theory: phase transition and addition formalism, cond-mat/9704191; Nonhermitean random matrix theory: method of hermitean reduction, cond-mat/9703087.

    Google Scholar 

  115. K. Efetov, Adv. Phys. 32, (1983) 53.

    Article  MathSciNet  ADS  Google Scholar 

  116. J.J.M. Verbaarschot, H.A. Weidenmüller, and M.R. Zirnbauer, Phys. Rep. 129, (1985) 367.

    Article  MathSciNet  ADS  Google Scholar 

  117. Y. Fyodorov and H. Sommers, JETP Lett. 63 (1996) 1026.

    Article  ADS  Google Scholar 

  118. B. Khoruzhenko, J. Phys. A: Math. Gen. 29, (1996) L165.

    Google Scholar 

  119. Y. Fyodorov, B. Khoruzhenko and H. Sommers, Phys. Lett. A226, (1997) 46.

    MathSciNet  ADS  Google Scholar 

  120. K. Efetov, Directed quantum chaos, cond-mat/9702091; Quantum disordered systems with a direction, cond-mat/9706055.

    Google Scholar 

  121. V.L. Girko, Theory of random determinants, Kluwer Academic Publishers, Dordrecht, 1990.

    Google Scholar 

  122. J.J.M. Verbaarschot and M.R. Zirnbauer, J. Phys. A17 (1985) 1093.

    MathSciNet  ADS  Google Scholar 

  123. R. Janik, M.A. Nowak, G. Papp, J. Wambach, and I. Zahed, Phys. Rev. E55 (1997) 4100; R. Janik, M.A. Nowak, G. Papp and I. Zahed, Nonhermitean random matrix models. 1, cond-mat/9612240.

    ADS  Google Scholar 

  124. I. M. Barbour, S. E. Morrison, E. G. Klepfish, J. B. Kogut and M.-P. Lombardo, Results on Finite Density QCD, hep-lat/9705042.

    Google Scholar 

  125. I. Barbour, N. Behihil, E. Dagotto, F. Karsch, A. Moreo, M. Stone and H. Wyld, Nucl. Phys. B275 (1986) 296; M.-P. Lombardo, J.B. Kogut and D.K. Sinclair, Phys. Rev. D54 (1996) 2303.

    Article  ADS  Google Scholar 

  126. I.M. Barbour, S. Morrison and J. Kogut, Lattice gauge theory simulation at nonzero chemical potential in the chiral limit, hep-lat/9612012.

    Google Scholar 

  127. E. Dagotto, F. Karsch and A. Moreo, Phys. Lett. 169 B, (1986) 421.

    ADS  Google Scholar 

  128. M.A. Halasz, J. Osborn and J.J.M. Verbaarschot, Random matrix triality at nonzero chemical potential, hep-lat/9704007, Phys. Rev. D (in press).

    Google Scholar 

  129. Th. Schäfer, Instantons and the Chiral Phase Transition at non-zero Baryon Density, hep-ph/9708256.

    Google Scholar 

  130. C. Baillie, K.C. Bowler, P.E. Gibbs, I.M. Berbour and M. Rafique, Phys. Lett. 197B, (1987) 195.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Verbaarschot, J. (2002). Universal Fluctuations in Dirac Spectra. In: Damgaard, P.H., Jurkiewicz, J. (eds) New Developments in Quantum Field Theory. NATO Science Series: B:, vol 366. Springer, Boston, MA. https://doi.org/10.1007/0-306-47075-6_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-47075-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45816-3

  • Online ISBN: 978-0-306-47075-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics