Advertisement

Spin-Labeled Nucleic Acids

  • Robert S. Keyes
  • Albert M. Bobst
Part of the Biological Magnetic Resonance book series (BIMR, volume 14)

6. Conclusions

Major progress was made during recent years in applying spin-labeled nucleic acids to biological systems due to the synthesis of new spin-labeled nucleic acid substrates recognized by a variety of nucleic acid polymerizing enzymes. The ready availability of oligonucleotides of defined sequence to serve as templates or primers has made it possible to incorporate spin-labeled bases sequence-specifically enzymatically into DNAs of small as well as large molecular weight. Secondly the synthesis of phosphotriester and phosphoramidate derivatives of spin-labeled nucleotides made it practical routinely to incorporate spin-labeled bases sequence specifically into oligonucleotides with a DNA synthesizer. In addition better analytical methods based on HPLC, FPLC, and CE technology can now be routinely used to verify the quality of spin-labeled nucleic acids. Progress in designing and automating EPR instrumentation and data collection also makes it feasible to work quantitatively with small amounts of spin-labeled oligonucleotides that can serve for instance as hybridization probes with as little as picomole amounts of material. Lastly new theoretical models were developed to allow the extraction of motional ordering and of global and local motion rates from spin-labeled nucleic acid EPR spectra. Success in addressing the question of how to decouple global motion from internal motions now makes it possible to work on gaining a more comprehensive understanding phenomena involving nucleic acids that are critical in cellular development.

Keywords

Electron Paramagnetic Resonance Spectrum Line Shape Spin Label Nuclear Magnetic Reso Electron Paramagnetic Resonance Spectrometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, S. A., Shibata, J. H., Wilcoxon, J., and Schurr, J. M., 1982, Biopolymers 21:729.CrossRefGoogle Scholar
  2. Atkinson, T, and Smith, M., 1984, Solid-phase synthesis of oligodeoxyribonucleotides by the phosphite-triester method, in Oligonucleotide Synthesis, a Practical Approach (M. J. Gait, ed.) (IRL, Oxford, UK), p. 35.Google Scholar
  3. Aurich, H. G., 1989, Nitroxides, in Nitrones, Nitronates, and Nitroxides (E. Breuer, H. G. Aurich, and A. Nielsen, eds.) (Wiley, New York), p. 313.Google Scholar
  4. Billeter, M., Qian, Y. Q., Otting, G., Müller, M., Gehring, W., and Wüthrich, K., 1993, J. Mol. Biol. 234:1084.Google Scholar
  5. Bobst, A. M., and Torrence, P. F., 1978, Polymer 19:115.CrossRefGoogle Scholar
  6. Bobst, A. M., 1979, Applications of spin labeling to nucleic acids, in Spin Labeling II: Theory and Applications (L. J. Berliner, ed.) (Academic, New York), p. 291.Google Scholar
  7. Bobst, A. M., Langemeier, P. W., Torrence, P. T., and De Clercq, E., 1981, Biochemistry 20:4798.CrossRefGoogle Scholar
  8. Bobst, A. M., Langemeier, P. W., Warwick-Koochaki, P. E., Bobst, E. V., and Ireland, J. C., 1982a, J. Biol. Chem. 257:6184.Google Scholar
  9. Bobst, A. M., Sinha, T. K., Langemeier, P. W., and Prairie, R. L., 1982b, Computers & Chemistry 4:45.Google Scholar
  10. Bobst, A. M., Ozinskas, A. J., and de Clercq, E., 1983, Helv. Chem. Acta 66:534.CrossRefGoogle Scholar
  11. Bobst, A. M., Kao, S.-C., Toppin, R. C, Ireland, J. C., and Thomas, I. E., 1984a, J. Mol. Biol. 173:63.CrossRefGoogle Scholar
  12. Bobst, A. M., Ireland, J. C., and Bobst, E. V, 1984b, J. Biol. Chem. 259:2130.Google Scholar
  13. Bobst, A. M., Pauly, G. T., Keyes, R. S., and Bobst, E. V, 1988, FEBS Lett. 228:33.CrossRefGoogle Scholar
  14. Bobst, E. V, Bobst, A. M., Perrino, F. W., Meyer, R. R., and Rein, D. C., 1985, FEBS Lett. 181:133.CrossRefGoogle Scholar
  15. Bobst, E. V., Keyes, R. S., Cao, Y. Y, and Bobst, A. M., 1996a, Biochemistry 35:9309.CrossRefGoogle Scholar
  16. Bobst, E. V, Keyes, R. S., Resendez-Perez, D., Gehring, W., and Bobst, A. M., 1996b, Biophys. J. 70:A157.Google Scholar
  17. Bobst, E. V, Keyes, R. S., and Bobst, A. M., 1997, manuscript in preparation.Google Scholar
  18. Bondarev, G. N., Isaeva-Ivanov, V. V, Isaeva-Ivanova, L. S., Kirillov, S. V, Kleiner, A. R., Lepekhin, A. F., Odinzov, V. B., and Fomichev, V. N., 1982, Nucl. Adds Res. 10:1113.Google Scholar
  19. Cassol, R., Ferrarini, A., and Nordio, P. L., 1993, J. Phys. Chem. 97:2933.CrossRefGoogle Scholar
  20. Chastain, P. D., Eichler, E. E., Kang, S., Nelson, D. L., Levene, S. D., and Sinden, R. R., 1995, Biochemistry 34:16125.CrossRefGoogle Scholar
  21. Crothers, D. M., 1994, Science 266:1819.Google Scholar
  22. Crothers, D. M., Haran, T. E., and Nadeau, J. G., 1990, J. Biol. Chem. 13:7093.Google Scholar
  23. Dalal, D. P., Eaton, S. S., and Eaton, G. R., 1981, J. Magn. Reson. 44:415.Google Scholar
  24. Duan, Y, Wilkosz, P., and Rosenberg, J. M., 1996, J. Mol. Biol. 264:546.CrossRefGoogle Scholar
  25. Duh, J.-L., 1990, Incorporation of Deoxyuridylic Acid Substituted in Position 5 with One-Atom-Tethered Nitroxides into Oligonucleotides by the Phosphotriester Method, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  26. Duh, J.-L., and Bobst, A. M., 1991, Helv. Chim. Acta 74:739.CrossRefGoogle Scholar
  27. Eimer, W., Williamson, J. R., Boxer, S. G., and Pecora, R., 1990, Biochemistry 29:799.CrossRefGoogle Scholar
  28. Fidanza, J. A., and McLaughlin, L, W., 1989, J. Am. Chem. Soc. 111:9117.CrossRefGoogle Scholar
  29. Folta-Stogniew, E., and Russu, I. M., 1994, Biochemistry 33:11016.CrossRefGoogle Scholar
  30. Frederick, C. A., Grable, J., Melia, M., Samudzi, C., Jen-Jacobson, L., Wang, B.-C., Greene, P., Boyer, H. W., and Rosenberg, J. M., 1984, Nature 309:327.CrossRefGoogle Scholar
  31. Freed, J. H., 1976, Theory of slow-tumbling ESR spectra for nitroxides, in Spin Labeling: Theory and Applications (L. J. Berliner, ed.) (Academic, New York), pp. 53–132.Google Scholar
  32. Freed, J. H., 1998, Line widths, line shapes, and spin relaxation in the one-and two-dimensional ESR of organic radicals and spin labels, in Foundations of Modern EPR (G. Eaton, S. Eaton, and K. Salikhov, eds.) (Worlol Scientific,), pp..Google Scholar
  33. Fritsch, V, Ravishanker, G., Beveridge, D. L., and Westhof, E., 1993, Biopolymers 33:1537.CrossRefGoogle Scholar
  34. Froehler, B. C., Wadwani, S., Terhorst, T. J., and Gerrard, S. R., 1992, Tetrahedron Lett. 33:5307.CrossRefGoogle Scholar
  35. Gait, M. J., 1984, An introduction to modern methods of DNA synthesis, in Oligonucleotide Synthesis, a Practical Approach (M. M. Gait, ed.) (IRL Press,), p. 1.Google Scholar
  36. Gehring, W. J., Müller, M., Affolter, M., Percival-Smith, A., Billeter, M., Qian, Y. Q., Otting, G., and Wüthrich, K., 1990, Trends Genet. 6:323.CrossRefGoogle Scholar
  37. Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F., Resendez-Perez, D., Affolter, M., Otting, G., and Wüthrich, K., 1994, Cell 78:211.CrossRefGoogle Scholar
  38. Georghiou, S., Bradrick, T. D., Philippetis, A., and Beechem, J. M., 1996, Biophys. J. 70:1909.Google Scholar
  39. Gibson, K. J., and Benkovic, S. J., 1987, Nucleic Acid Research 15:6455.Google Scholar
  40. Godde, J. S., and Wolffe, A. P., 1996, J. Biol. Chem. 271:15222.Google Scholar
  41. Griffith, O. H., and Jost, P. C., 1976, Lipid spin labels in biological membranes, in Spin Labeling: Theory and Applications (L, J. Berliner, ed.) (Academic, New York), pp. 453–523.Google Scholar
  42. Hagerman, P. J., 1985, Biochemistry 24:7033.CrossRefGoogle Scholar
  43. Hagerman, P. J., 1988, Ann. Rev. Biophys. 17:265.Google Scholar
  44. Hagerman, P. J., 1992, Biochem. Biophys. Acta 1131:125.Google Scholar
  45. Hakam, A., Thomas, I. E., and Bobst, A. M., 1980, Int. J. Biol. Macromol. 2:49.CrossRefGoogle Scholar
  46. Haralambidis, J., Chai, M., and Tregear, G. W., 1987, Nucl. Acids Res. 15:4857.Google Scholar
  47. Hustedt, E. J., Spaltenstein, A., Kirchner, J. J., Hopkins, P. B., and Robinson, B. H., 1993a, Biochemistry 32:1774.CrossRefGoogle Scholar
  48. Hustedt, E. J., Cobb, C. E., Beth, A. H., and Beechem, J. M., 1993b, Biophys. J. 64:614.Google Scholar
  49. Hustedt, E. J., Kirchner, J. J., Spaltenstein, A., Hopkins, P. B., and Robinson, B. H., 1995, Biochemistry 34:4369.CrossRefGoogle Scholar
  50. Hwang, J. S., Mason, R. P., Hwang, L.-P., and Freed, J. H., 1975, J. Phys. Chem. 79:489.CrossRefGoogle Scholar
  51. Ireland, J. C., Willet, J. A., and Bobst, A. M., 1983, J. Biochem. Biophys. Meth. 8:49.Google Scholar
  52. Ireland, J. C., 1984, Physical and Chemical Interactions of Adriamycin and Daunomycin with Spin Labeled Nucleic Acids, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  53. Ivanov, I., Raikova, E., Raikov, Z., Yaneva, J., and Kaffalieva, D., 1983, Int. J. Biochem. 15:433.CrossRefGoogle Scholar
  54. Jacobson, R. H., and Tjian, R., 1996, Science 272:827.Google Scholar
  55. Johnson, M. E., 1981, Biochemistry 20:3319.Google Scholar
  56. Kamzolova, S. G., and Postnikova, G. B., 1981a, Q. Rev. Biophys. 14:223.Google Scholar
  57. Kamzolova, S. G,, and Postnikova, G. B., 1981b, Molekulyarnaya Biologiya 15:272.Google Scholar
  58. Kamzolova, S. G., 1987, Biokhimiya 52:1577.Google Scholar
  59. Kao, S-C., Polnaszek, C. E, Toppin, C. R., and Bobst, A. M., 1983, Biochemistry 22:5563.CrossRefGoogle Scholar
  60. Kao, S.-C., and Bobst, A. M., 1985, Biochemistry 24:5465.CrossRefGoogle Scholar
  61. Kao, S. C., and Bobst, A. M., 1986, J. Magn. Res. 67:125.Google Scholar
  62. Kaplan, B. E., and Itakura, K., 1987, DNA synthesis on solid supports and automation, in Synthesis and Applications of DNA and RNA (S. A. Narang, ed.) (Academic, New York), p. 9.Google Scholar
  63. Keyes, R. S., 1994, Probing Nucleic Acid Dynamics and Protein-Nucleic Acid Interactions, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  64. Keyes, R. S., and Bobst, A. M., 1993, Biophys. Chem. 45:281.CrossRefGoogle Scholar
  65. Keyes, R. S., and Bobst, A. M., 1995, Biochemistry 34:9265.CrossRefGoogle Scholar
  66. Keyes, R. S., Bobst, E. V, Cao, Y. Y., and Bobst, A. M., 1997, Biophys. J. 72:282.Google Scholar
  67. Keyes, R. S., Cao, Y. Y, Bobst, E. V, Rosenberg, J. M., and Bobst, A. M., 1996, J. Biomol. Struct. Dyn., in press.Google Scholar
  68. Kim, Y, Choi, J., Grable, J. C., Greene, P., Hager, P., and Rosenberg, J. M., 1994, Studies on the canonical DNA-Eco RI endonuclease complex and the Eco RI kink, in Structural Biology: State of the Art, vol. 1 (R. H. Sarma and M. H. Sarma, eds.) (Adenine, New York), pp. 225–46.Google Scholar
  69. Kim, Y, Grable, J. C., Love, R., Greene, P. J., and Rosenberg, J. M., 1990, Science 249:1307.Google Scholar
  70. Kirchner, J. J., Hustedt, E. J., Robinson, B. H., and Hopkins, P. B., 1990, Tetrahedron Lett. 31:593.CrossRefGoogle Scholar
  71. Kissinger, C. R., Liu, B., Martin-Blanco, E., Kornberg, T. B., and Pabo, C. O., 1990, Cell 63:579.CrossRefGoogle Scholar
  72. Kryak, D. D., 1990, Sequence Specific Incorporation of Deoxyuridylic Acid Substituted in Position 5 with Two-Atom-Tethered Nitroxides into Oligothymidylic Acids by Phosphotriester Chemistry, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  73. Kryak, D. D., and Bobst, A. M., 1990, Nucleosides Nucleotides 9:1015.Google Scholar
  74. Kumar, S., Duan, Y, Kollman, P. A., and Rosenberg, J. M., 1994, J. Biomol. Struct. Dyn. 12:487.Google Scholar
  75. Kuwabara, M., Lion, Y., and Riesz, P., 1981, Int. J. Radiat. Biol. 39:491.Google Scholar
  76. Langemeier, P. W., and Bobst, A. M., 1981, Arch. Biochem. Biophys. 208:205.CrossRefGoogle Scholar
  77. Lee, K. M., and Marshall, A. G., 1987, Biochemistry 26:5534.Google Scholar
  78. Leroy, J. L., Kochoyan, M., Huynh-Dinh, T., and Guéron, M., 1988, J. Mol. Biol. 200:223.CrossRefGoogle Scholar
  79. Levine, M., and Hoey, T., 1988, Cell 55:537.CrossRefGoogle Scholar
  80. Lipari, G., and Szabo, A., 1982, J. Am. Chem. Soc. 104:4546.Google Scholar
  81. Love, J. J., Li, X., Case, D. A., Giese, K., Grosschedl, R., and Wright, P. E., 1995, Nature 376:791.CrossRefGoogle Scholar
  82. Makino, K., Murakami, A., Nagahara, S., Nakatsuji, Y., and Takeuchi, T., 1988, Nucl. Acids Res. Symp. Ser. 20:89.Google Scholar
  83. Makino, K., Murakami, A., Nagahara, S., Nakatsuji, Y., and Takeuchi, T., 1989, Free Rad. Res. Comms. 6:311.Google Scholar
  84. Makino, K., Nagahara, S., Konishi, Y., Mukae, M., Ide, H., and Murakami, A., 1993, Free Rad. Res. Comms. 19:S109.Google Scholar
  85. Marsh, D., 1989, Experimental methods in spin-label spectral analysis, in Spin Labeling: Theory and Applications, vol. 8, Biol. Magn. Reson. (L. J. Berliner and J. Reuben, eds.) (Plenum, New York), p. 255.Google Scholar
  86. McGhee, J. D., and von Hippel, P. H., 1974, J. Mol. Biol. 86:469.CrossRefGoogle Scholar
  87. McGinnis, W., Levine, M., Hafen, E., Kuroiwa, A., and Gehring, W. J., 1984, Nature 308:428.CrossRefGoogle Scholar
  88. Miller, T. R., Alley, S. C., Reese, A. W., Solomon, M. S., McCallister, W. V., Mailer, C., Robinson, B. H., and Hopkins, P. B., 1995, J. Am. Chem. Soc. 117:9377.Google Scholar
  89. Morrison, L. E., Halder, T. C., and Stols, L. M., 1989, Anal. Biochem. 183:231.CrossRefGoogle Scholar
  90. Murakami, A., Nagahara, S., Takeuchi, T., and Makino, K., 1989, Nucl. Acids Res. Symp. Ser. 21:89.Google Scholar
  91. Murakami, A., Mukae, M., Nagahara, S., Konishi, Y., Ide, H., and Makino, K., 1993, Free Rad. Res. Comms. 19:S117.Google Scholar
  92. Nordio, P. L., 1976, General magnetic resonance theory, in Spin Labeling: Theory and Applications (L. J. Berliner, ed.) (Academic, New York), p. 5.Google Scholar
  93. Nöthig-Laslo, V., Weygand-Durasevic, I., Zivkovic, T., and Kucan, Z., 1981, Eur. J. Biochem. 117:263.Google Scholar
  94. Nöthig-Laslo, V., Weygand-Durasevic, I., and Kucan, Z., 1985, J. Biomol. Struct. Dyn. 2:941.Google Scholar
  95. Nöthig-Laslo, V., Podravec, M., and Kucan, Z., 1987, Period. Biol. 89:3.Google Scholar
  96. Otting, G., Qian, Y. Q., Billeter, M., Müller, M., Affolter, M., Gehring, W. J., and Wüthrich, K., 1990, EMBO J. 9:3085.Google Scholar
  97. Ozinskas, A. J., 1981, Synthesis of C5-substituted Pyrimidine Nucleosides as Antiviral Agents and Characterization of Nitroxide Labeled Polynucleotides as Molecular Probes, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  98. Ozinskas, A. J., Devanesan, P. D., Keller, S. J., and Bobst, A. M., 1981, Nucl. Acids Res. 9:5483.Google Scholar
  99. Parraga, G., and Klevit, R. E., 1991, Meth. Enzymol. 208:63.Google Scholar
  100. Pauly, G. T., Thomas, I. E., and Bobst, A. M., 1987, Biochemistry 26:7304.CrossRefGoogle Scholar
  101. Pauly, G. T., Bobst, E. V., Bruckman, D., and Bobst, A. M., 1989, Helv. Chim. Acta 72:110.CrossRefGoogle Scholar
  102. Pearson, C. E., and Sinden, R. R., 1996, Biochemistry 35:5041.CrossRefGoogle Scholar
  103. Persichetti, R. A., Sinden, R. R., Duh, J.-L., and Bobst, A. M., 1991, Synthetic Commun. 21:1013.Google Scholar
  104. Petrov, A. I., and Sukhorukov, B. I., 1980, Nucl. Acids Res. 8:4221.Google Scholar
  105. Petrov, A. I., Ebert, B., Damerau. W., and Sukhorukov, 1985, Stud. Biophys. 107:161.Google Scholar
  106. Polimeno, A., and Freed, J. H., 1995, J. Phys. Chem. 99:10995.CrossRefGoogle Scholar
  107. Polnaszek, C. F., and Freed, J. H., 1975, J. Phys. Chem. 79:2283.CrossRefGoogle Scholar
  108. Qian, Y. Q., Billeter, M., Otting, G., Müller, M., Gehring, W. J., and Wüthrich, K., 1989, Cell 59:573.CrossRefGoogle Scholar
  109. Raikova, E., Ivanov, I., Kaffalieva, D., Demirov, G., and Raikov, Z., 1982, Int. J. Biochem. 14:41.CrossRefGoogle Scholar
  110. Raikova, E. T., Kaffalieva, D. N., Ivanov, I. G., Zakhariev, S. G., and Golovinsky, E. V., 1983, Biochem. Pharmacology 32:587.Google Scholar
  111. Robinson, B. H., and Drobny, G. P., 1995, Methods Enzymol. 261:451.Google Scholar
  112. Robinson, B. H., Slutsky, L. J., and Auteri, F. P., 1992, J. Chem. Phys. 96:2609.Google Scholar
  113. Rosenberg, J. M., Kumar, S., Duan, Y., and Kollman, P., 1994, Proceedings of International Conference on Computational Physics II:228.Google Scholar
  114. Russel, M., Gold, L., Morrissett, H., and O’Farrell, P. Z., 1976, J. Biol. Chem. 251:7263.Google Scholar
  115. Saupe, A., 1964, Z. Naturforsch. 19A:161.Google Scholar
  116. Schleif, R., 1992, Ann. Rev. Biochem. 61:119.Google Scholar
  117. Schneider, D. J., and Freed, J. H., 1989a, Calculating slow motional magnetic resonance spectra, in Spin Labeling: Theory and Applications, vol. 8, Biol. Magn. Reson. (L. J. Berliner and J. Reuben, eds.) (Plenum, New York), p. 1.Google Scholar
  118. Schneider, D. J., and Freed, J. H., 1989b, Spin relaxation and motional dynamics, in Lasers, Molecules, and Methods, vol. 73, Adv. Chem. Phys. (J. O. Hirschfelder, R. E. Wyatt, and R. D. Coalson, eds.) (Wiley, New York), p. 387.Google Scholar
  119. Schurr, J. M., and Fujimoto, B. S., 1988, Biopolymers 27:1543.CrossRefGoogle Scholar
  120. Schurr, J. M., Fujimoto, B. S., Wu, P., and Song, L., 1992, Fluorescence studies of nucleic acids, in Topics in Fluorescence Spectroscopy, vol. 3. Biological Applications (J. R. Lakowicz, ed.) (Plenum, New York), pp. 137–229.Google Scholar
  121. Scott, M. P., and Weiner, A. J., 1984, Proc. Natl. Acad. Sci. U.S.A. 81:4115.Google Scholar
  122. Sinden, R. R., 1994, DNA Bending, in DNA Structure and Function (Academic, New York), p. 58.Google Scholar
  123. Spaltenstein, A., Robinson, B. H., and Hopkins, P. B., 1988, J. Am. Chem. Soc. 110:1299.CrossRefGoogle Scholar
  124. Spaltenstein, A., Robinson, B. H., and Hopkins, P. B., 1989a, Biochemistry 28:9484.CrossRefGoogle Scholar
  125. Spaltenstein, A., Robinson, B. H., and Hopkins, P. B., 1989b, J. Am. Chem. Soc. 111:2303.Google Scholar
  126. Spielmann, H. P., Chi, D.-Y, Hunt, N. G., Klein, M. P., and Hearst, J. E., 1995, Biochemistry 34:14801.Google Scholar
  127. Steinhoff, H.-J., 1988, J. Biochem. Biophys. Meth. 17:237.Google Scholar
  128. Strobel, O. K., Bobst, E. V., and Bobst, A. M., 1989, Arch. Biochem. Biophys. 273:597.CrossRefGoogle Scholar
  129. Strobel, O. K., Keyes, R. S., and Bobst, A. M., 1990a, Biochemistry 29:8522.CrossRefGoogle Scholar
  130. Strobel, O. K., Keyes, R. S., and Bobst, A. M., 1990b, Biochem. Biophys. Res. Commun. 166:1435.CrossRefGoogle Scholar
  131. Strobel, O. K., Kryak, D. D., Bobst, E. V., and Bobst, A. M., 1991, Bioconjugate Chem. 2:89.CrossRefGoogle Scholar
  132. Strobel, O. K., 1992, An Investigation of Z-DNA by Electron Paramagnetic Resonance Spectroscopy, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  133. Strobel, O. K., Keyes, R. S., Sinden, R. R., and Bobst, A. M., 1995, Arch. Biochem. Biophys. 324:357.CrossRefGoogle Scholar
  134. Timofeev, V. P., and Samarianov, B. A., 1993, Appl. Magn. Reson. 4:523.Google Scholar
  135. Timofeev, V, and Samarianov, B., 1995, J. Chem. Soc. Perkin Trans. 2:2175.Google Scholar
  136. Tirado, M. M., and García de la Torre, J., 1980, J. Chem. Phys. 73:1986.CrossRefGoogle Scholar
  137. Toppin, C. R., 1983, Synthesis of Analogues of Uridine and 2’-Deoxyuridine Spin Labeled at Positions 4 or 5 as Substrates for RNA and DNA Polymerizing Enzymes, Ph.D. diss., University of Cincinnati, Cincinnati, OH.Google Scholar
  138. Toppin, C. R., Thomas, C. R., and Bobst, A. M., 1983a, Helv. Chim. Acta 66:1966.CrossRefGoogle Scholar
  139. Toppin, C. R., Thomas, C. R., Bobst, E. V., and Bobst, A. M., 1983b, Int. J. Biol. Macromol. 5:33.CrossRefGoogle Scholar
  140. Van, S. P., Birrell, G. B., and Griffith, O. H., 1974, J. Magn. Reson. 15:444.Google Scholar
  141. Wagner, R. W., Matteucci, M. D., Grant, D., Huang, T., and Froehler, B. C., 1996, Nature Biotechn. 14:840.Google Scholar
  142. Warwick-Koochaki, P. E., Hakam, A., and Bobst, A. M., 1983, FEBS Lett. 152:157.CrossRefGoogle Scholar
  143. Warwick-Koochaki, P. E., and Bobst, A. M., 1984, Arch. Biochem. Biophys. 228:425.Google Scholar
  144. Wells, R. R., and Sinden, R. R., 1993, Defined ordered sequence DNA, DNA structure, and DNA-directed mutation, in Genome Analysis, vol. 7: Genome Rearrangement and Stability (K. Davies and S. T. Warren, eds.) (Cold Spring Harbor Laboratory Press, Plainview), p. 107.Google Scholar
  145. Weygand-Durasevic, I., Nöthig-Laslo, V., and Kucan, Z., 1984, Eur. J. Biochem. 139:541.CrossRefGoogle Scholar
  146. Weygand-Durasevic, I., and Susic, S., 1990, Biochem. Biophys. Acta 1048:38.Google Scholar
  147. Wolberger, C., Vershon, A. K., Liu, B., Johnson, A. D., and Pabo, C. O., 1991, Cell 67:517.CrossRefGoogle Scholar
  148. Young, M. A., Ravishanker, G., Beveridge, D. L., and Berman, H. M., 1995, Biophys. J. 68:2454.Google Scholar
  149. Zhdanov, R. I., Volkova, L. A., Kuvichkin, V. V., and Petrov, A. I., 1994, Appl. Magn. Reson. 7:115.Google Scholar
  150. Zhurkin, V. B., Ulyanov, N. B., Gorin, A. A., and Jernigan, R. L., 1991, Proc. Natl. Acad. Sci. U.S.A. 88:7046.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Robert S. Keyes
    • 1
  • Albert M. Bobst
    • 1
  1. 1.Department of ChemistryUniversity of CincinnatiUSA

Personalised recommendations