Skip to main content

Pillared Clays and Ion-Exchanged Pillared Clays as Gas Adsorbents and as Catalysts for Selective Catalytic Reduction of No

  • Chapter

Part of the book series: Fundamental Materials Research ((FMRE))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Barrer and D.M. MacLeod, Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites, Trans. Faraday Soc., 51:1290 (1955).

    Article  CAS  Google Scholar 

  2. R.M. Barrer, “Zeolites and Clay Minerals as Sorbent and Molecular Sieves,” Academic Press, New York (1978).

    Google Scholar 

  3. G.W. Brindley and R.E. Sempels, Preparation and properties of some hydroxy-aluminum beidellites, Clays Clay Miner., 12:229 (1977).

    CAS  Google Scholar 

  4. D.E.W. Vaughan, R.J. Lussier and J.S. Magee, Pillared interlayered clay minerals useful as catalyst and sorbents, U.S. Patent 4,176,090 (1979).

    Google Scholar 

  5. D.E.W. Vaughan, J.S. Magee and R.J. Lassier, Pillared interlayered clay products, U.S. Patent 4,271,043 (1981).

    Google Scholar 

  6. D.E.W. Vaughan, Multimetallic pillared interlayered clay products and processes of making them, U.S. Patent 4,666,877 (1987).

    Google Scholar 

  7. N. Lahav, N. Shani and J. Shabtai, Cross-linked smectites. I. Synthesis and properties of hydroxy-aluminum montmorillonite, Clays Clay Miner., 26:107 (1978).

    CAS  Google Scholar 

  8. J. Shabtai, F.E. Massoth, M. Tokarz, G.M. Tsai and J. McCauley, Characterization and molecular shape selectivity of cross-linked montmorillonite (CLM), Proc. 8th Internat. Cong. Catal., 4:735 (1984).

    Google Scholar 

  9. J. Shabtai, M. Rosell and M. Tokarz, Cross-linked smectites. III. Synthesis and properties of hydroxy-alumina hectorites and fluorohectorites, Clays Clay Miner., 32:99 (1984).

    CAS  Google Scholar 

  10. T.J. Pinnavaia, M.S. Tzou, S.D. Landau and R.H. Raythatha, On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum, J. Molec. Catal., 27:195 (1984).

    CAS  Google Scholar 

  11. M.L. Occelli, Sorption of normal paraffins in a pillared clay mineral, Proc. 8th Internat. Congr. Catal. 4:725 (1984).

    Google Scholar 

  12. J. Sterte, Preparation and properties of large-pore La-Al-pillared montmorillonite, Clays and Clay Minerals, 39:167 (1991).

    CAS  Google Scholar 

  13. K. Suzuki, M. Horio and T. Mori, “Preparation of aluminum-pillared montmorillonite with desired pillar population, Mat. Res. Bull. 23:1711 (1988).

    Article  CAS  Google Scholar 

  14. M.L. Occelli and R.M. Tindwa, Physicochemical properties of montmorillonite interlayered with cationic oxyaluminum pillars, Clays Clay Miner., 31(1):22 (1983).

    CAS  Google Scholar 

  15. T.J. Pinnavaia, Intercalated clay catalysts, Science, 220:365 (1983).

    CAS  Google Scholar 

  16. R. Burch, Pillared clays, in: “Catalysis Today,” R. Burch, ed, Elsevier, New York, 2:185 (1988).

    Google Scholar 

  17. F. Figueras, Pillared clays as catalysts, Catal. Rev. Sci. Eng., 30:457 (1988).

    CAS  Google Scholar 

  18. R. Molina, A. Vieira-Coelho and G. Poncelet, Hydroxy-A1 pillaring of concentrated clay suspensions, Clays and Clay Minerals, 40(4):480 (1992).

    CAS  Google Scholar 

  19. S. Yamanaka and G.W. Brindley, High surface area solids obtained by reaction of montmorillonite with zirconyl chloride, Clays and Clay Miner., 27:119 (1979).

    CAS  Google Scholar 

  20. F. Figueras, A. Mattrod-Bashi, G. Fetter, A. Thrierr and J.V. Zanchetta, Preparation and thermal properties of Zr-intercalated clays, J. Catal., 119:91 (1989).

    Article  CAS  Google Scholar 

  21. R. Burch and C.I. Warburton, Zr-containing pillared interlayer clays, J. Catal., 97:503 (1986).

    CAS  Google Scholar 

  22. G.J.J. Bartley and R. Burch, Zr-containing pillared interlayer clays. Part III. Influence of method of preparation on the thermal and hydrothermal stability, Applied Catal., 19:175 (1985).

    CAS  Google Scholar 

  23. R.T. Yang and M.S.A. Baksh, Pillared clays as a new class of sorbents for gas separation, AIChE J., 37:679 (1991).

    CAS  Google Scholar 

  24. M.S. Tzou and T.J. Pinnavaia, Chromia pillared clays, in:“Pillared Clays,” R. Burch, ed, Catal. Today, 2:243 (1988).

    Google Scholar 

  25. K.A. Carrado, S.L. Suib, N.D. Skoularikis and R.W. Coughlin, Chromium (III)-doped pillared clays (PILCs), Inorg. Chem. 25:4217 (1986).

    Article  CAS  Google Scholar 

  26. P.D. Hopkins, B.L. Meyers and D.M. Van Duch, Chromium expanded smectite clay, U.S. Patent 4,452,910 (1984).

    Google Scholar 

  27. J. Shabtai and N. Lahari, Cross-linked montmorillonite molecular sieves, U.S. Patent 4,216,188 (1980).

    Google Scholar 

  28. T.J. Pinnavaia, M.S. Tzou and S.D. Landau, New chromia pillared clay catalysts, J. Amer. Chem. Soc., 107:2783 (1985).

    Google Scholar 

  29. S. Yamanaka and M. Hattori, Iron oxide pillared clay, Catal. Today, 2:261 (1988).

    Article  CAS  Google Scholar 

  30. S. Yamanaka, T. Doi, S. Sako and M. Hattori, High surface area solids obtained by intercalation of iron oxide pillars in montmorillonite, Mat. Res. Bull. 19:161 (1984).

    Article  CAS  Google Scholar 

  31. R. Burch and C.I. Warburton, Pillared clays as demetallisation catalysts, Applied Catal., 33:395 (1987).

    CAS  Google Scholar 

  32. W.Y. Lee, R.H. Raythatha and B.J. Tatarchuk, Pillared-clay catalysts containing mixed-metal complexes. I. Preparation and characterization, J. Catal., 115:159 (1989).

    Article  CAS  Google Scholar 

  33. T.J. Pinnavaia and M.S. Tzou, Pillared and delaminated clays containing iron, U.S. Patent 4,665,044 (1987).

    Google Scholar 

  34. C.I. Warburton, Preparation and catalytic properties of iron oxide and iron sulphide pillared clays, Catal. Today, 2:271 (1988).

    Article  CAS  Google Scholar 

  35. E.G. Rightor, M.S. Tzou and T.J. Pinnavaia, Iron oxide pillared clay with large gallery height: Synthesis and properties as a Fischer-Tropsch catalyst, J. Catal., 130:29 (1991).

    Article  CAS  Google Scholar 

  36. J. Sterte, Preparation and properties of titanium oxide cross-linked montmorillonite, Clays & Clay Miner., 34(6):658 (1986).

    CAS  Google Scholar 

  37. A. Bernier, L.F. Admaiai and P. Grange, Synthesis and characterization of titanium pillared clays-influence of the temperature and preparation, Appl. Catal., 77:269 (1991).

    CAS  Google Scholar 

  38. H.L. Del Castillo and P. Grange, Preparation and catalytic activity of titanium pillared montmorillonite, Applied Catalysis A: General, 103:23 (1993).

    Article  Google Scholar 

  39. S. Yamanaka and G. Brindley, Hydroxy-nickel interlayering in montmorillonite by titration method, Clays and Clay Miner., 26:21 (1978).

    CAS  Google Scholar 

  40. T.A. Werpy, T.J. Pinnavaia and I.J. Johnson, Tubular silicate-layered silicate intercalation compounds: A new family of pillared clays, J. Amer. Chem. Soc., 110:8545 (1988).

    Google Scholar 

  41. G. Fetter, D. Tichit, P. Massiani, R. Dutartre and F. Figueras, Preparation and characterization of montmorillonites pillared by cationic silicon species, Clays and Clay Minerals, 42:161 (1994).

    CAS  Google Scholar 

  42. C.F. Baes and R.E. Mesmer, “The Hydrolysis of Cations,” Wiley, New York (1976).

    Google Scholar 

  43. A. Clearfield, Recent advances in pillared clays and group IV metal phosphates, NATO ASISer., Ser. C, 231:271 (1988).

    CAS  Google Scholar 

  44. M.A. Drezdon, Synthesis of isopolymetalate-pillared hydrotalcite via organic-anion-pillared precursors, Inorg. Chem., 27:4628 (1988).

    Google Scholar 

  45. R. Sprung, M.E. Davis, J.S. Kauffman and C. Dybowski, Pillaring of magadiite with silicate species, Ind. Eng. Chem. Res., 29:213 (1990).

    Article  CAS  Google Scholar 

  46. H. van Olphen and J.J. Fripiat, “Data Handbook for Clay Minerals and Other Non-Metallic Minerals,” Pergamon Press, New York (1979).

    Google Scholar 

  47. J.J. Fripiat, High resolution solid state NMR study of pillared clays, Catal. Today, 2:281 (1988).

    Article  CAS  Google Scholar 

  48. J.J. Fripiat, “Developments in Sedimentology: Advanced Techniques for Clay Mineral Analysis,” J.J. Fripiat, ed., Elsevier, New York, Vol. 34 (1982).

    Google Scholar 

  49. J.W. Johnson and J.F. Brody, Mat. Res. Soc. Symp. Proc., 111:257 (1988).

    CAS  Google Scholar 

  50. F. Gonzalez, C. Pesquera, C. Blanco, I. Benito and S. Mendioroz, Synthesis and characterization of AI-Ga pillared clays with high thermal and hydrothermal stability, Inorg. Chem., 31:727 (1992).

    Article  CAS  Google Scholar 

  51. J. Barrault, L. Gatineau, N. Hassoun and F. Bergaya, Selective syngas conversion over mixed A1-Fe pillared Laponite clay, Energy & Fuels, 6:760 (1992).

    Article  CAS  Google Scholar 

  52. A.V. Coelho and G. Poncelet, Gallium, aluminum and mixed gallium aluminum pillared montmorillonite-Preparation and characterization, Applied Catalysis, 77:303 (1991).

    Article  Google Scholar 

  53. M.L. Occelli, Surface and catalytic properties of some pillared clays, in:“Proc. Internat. Clay Conf. Denver, 1985,” L.G. Schultz, H. van Olphen and F.A. Mumpton, eds., Clay Minerals Soc., Bloomington, Indiana p. 319 (1987).

    Google Scholar 

  54. S. Yamanaka, T. Nishihara and M. Hattori, “Adsorption and Acidic Properties of Clays Pillared with Oxide Sols. Microstructure and Properties of Catalysts,” Proc. Materials Research Society, Boston, Vol. III, M.M.J. Treacy, J.M. Thomas and J.M. White, eds., Materials Research Soc., Pittsburgh, Pennsylvania, p. 238 (1987).

    Google Scholar 

  55. S. Yamanaka, T. Nishihara, M. Hottori and Y. Suzuki, Preparation and properties of titania pillared clay, Mat. Chem. Phys., 17 (1987).

    Google Scholar 

  56. T.J. Pinnavaia, Intercalated clay catalysts, Science, 220:365 (1983).

    CAS  Google Scholar 

  57. I.V. Mitchell, ed., “Pillared Layered Structures. Current Trends and Applications,” Elsevier, Amsterdam (1990).

    Google Scholar 

  58. A. Schultz, W.E.E. Stone, G. Poncelet and J.J. Fripiat, Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions, Clays and Clay Minerals, 35:251 (1987).

    Google Scholar 

  59. M.S.A. Baksh, “Development, Characterization and Application of New Adsorbents for Separation by Adsorption,” Ph.D. Dissertation, SUNY at Buffalo (1991).

    Google Scholar 

  60. A. Gil and M. Montes, Analysis of the microporosity in pillared clays, Langmuir, 10:291 (1994).

    Article  CAS  Google Scholar 

  61. D. Plee, F. Borg, L. Gatineau and J.J. Fripiat, Pillaring processes of smectites with and without tetrahedral substitution, Clays & Clay Minerals, 35:81 (1987).

    CAS  Google Scholar 

  62. P.B. Malla and S. Komarneni, Synthesis of highly microporous and hydrophilic alumina pillared montmorillonite: Water-sorption properties, Clays and Clay Minerals, 38:363 (1990).

    CAS  Google Scholar 

  63. J.R. Butruille and T.J. Pinnavaia, Propene alkylation of liquid-phase biphenyl catalyzed by Al-pillared clay catalyst, Catalysis Today, 14:141 (1992).

    Article  CAS  Google Scholar 

  64. L.S. Cheng and R.T. Yang, unpublished results (1995).

    Google Scholar 

  65. J.M. Thomas and K.I. Zamarev, “Perspectives in Catalysis — A ‘Chemistry for the 21 st Century,’” Monograph, Blackwell Scientific Publications, Oxford (1992).

    Google Scholar 

  66. R.T. Yang, “Gas Separation by Adsorption Processes,” Butterworth, Boston (1987).

    Google Scholar 

  67. S.J. Gregg and K.S.W. Sing, “Adsorption, Surface Area and Porosity,” 2nd Ed., Academic Press, London (1982).

    Google Scholar 

  68. D.M. Moore and R.C. Reynolds, Jr., “X-Ray Diffraction and the Identification and Analysis of Clay Minerals,” Oxford University Press, Oxford (1989).

    Google Scholar 

  69. M.L. Occelli, R.A. Innes, F.S. Hwu and J.W. Hightower, Sorption and catalysis on sodium-montmorillonite interlayered with aluminum oxide clusters, Appl. Catal., 14:69 (1985).

    CAS  Google Scholar 

  70. S. Yamanaka, P.B. Malla and S. Komameni, Water adsorption properties of alumina pillared clay, J. Coll. Inter. Sci., 13:451 (1990).

    Google Scholar 

  71. M.H. Stacey, Alumina-pillared clays and their adsorptive properties, Catalysis Today, 2:621 (1988).

    Article  CAS  Google Scholar 

  72. L.S. Cheng and R.T. Yang, Monolayer cuprous chloride dispersed on pillared clays for olefin-paraffin separations by π-complexation, Adsorption, 1:61 (1995).

    CAS  Google Scholar 

  73. A. Dyer and T. Gallardo, Cation and anion exchange properties of pillared clays, in:“Recent Developments in Ion Exchange,” P.A. Williams and M.J. Hudson, eds., Elsevier, Amsterdam (1990).

    Google Scholar 

  74. A. Molinard and E.F. Vansant, Gas adsorption properties of cation modified alumina pillared montmorillonite, in:“Separation Technology,” E.F. Vansant, ed., Elsevier, Amsterdam (1994).

    Google Scholar 

  75. A. Molinard and E.F. Vansant, Controlled gas adsorption properties of various pillared clays, Adsorption, 1:49 (1995).

    Article  CAS  Google Scholar 

  76. D.W. Breck, “Zeolite Molecular Sieves: Structure, Chemistry and Use,” Wiley, New York (1974).

    Google Scholar 

  77. C.B. Amphlett, “Inorganic Ion Exchangers,” Elsevier, Amsterdam (1964).

    Google Scholar 

  78. J.R. Anderson, “Structure of Metallic Catalysts,” Academic Press, London (1975).

    Google Scholar 

  79. J.R. Jones and J.H. Purnell, The catalytic dehydration of pentan-1-d by alumina pillared Texas montmorillonites of differing pillar density, Catalysis Letters, 28:283 (1994).

    Article  CAS  Google Scholar 

  80. M.L. Occelli, Catalytic cracking with an interlayered clay-A two-dimensional molecular sieve, Ind. Eng. Chem. Prod. Res. Dev., 22(4):553 (1983).

    Article  CAS  Google Scholar 

  81. E.G. Rightor, M.S. Tzou and T.J. Pinnavaia, Iron oxide pillared clay with large gallery height: Synthesis and properties as a Fischer-Tropsch catalyst, J. Catal., 130:29 (1991).

    Article  CAS  Google Scholar 

  82. L.J. Czarnecki and R.G. Anthony, Selective catalytic reduction of NO over vanadia on pillared titanium phosphate, AIChE J., 36:794 (1990).

    Article  CAS  Google Scholar 

  83. M.Y. He, Z. Liu and E. Min, Acidic and hydrocarbon catalytic properties of pillared clay, Catal. Today, 2:321 (1988).

    CAS  Google Scholar 

  84. P.T.B. Tennakoon, W. Jones and J.M. Thomas, Structural aspects of metal oxide pillared sheet silicates, J. Chem. Soc. Faraday Trans. I., 82:3081 (1986).

    Google Scholar 

  85. J.P. Chen and R.T. Yang, Mechanism of poisoning of the V2O5/TiO2 catalyst for the selective catalytic reduction of NO by NH3, J. Catal., 125:411 (1990).

    Article  CAS  Google Scholar 

  86. J.W. Beeckman and L.L. Hegedus, Design of monolith catalysts for power plant NOx emission control, Ind. Eng. Chem. Res., 30:969 (1991).

    CAS  Google Scholar 

  87. M.L. Occelli, S.D. Landau and T.J. Pinnavaia, Physicochemical properties of a delaminated clay cracking catalyst, J. Catal., 104:331 (1987).

    Article  CAS  Google Scholar 

  88. M. Occelli, Surface properties and cracking activity of delaminated clay catalysts, in: “Pillared Clays,” R. Burch, ed., Catal. Today, 2:339 (1988).

    Google Scholar 

  89. J.P. Chen, M.C. Hausladen and R.T. Yang, Delaminated Fe203-pillared clay: Its preparation, characterization, and activities for selective catalytic production of NO by NH3, J. Catal., 151:135 (1995).

    Article  CAS  Google Scholar 

  90. H. Bosch and F. Janssen, Catalytic reduction of nitrogen oxides, Catal. Today, 4:369 (1989).

    Article  Google Scholar 

  91. B.K. Cho, Nimc-oxide reduction by hydrocarbons over Cu-ZSM-5 monolith catalyst under lean conditions-Steady state kinetics, J. Catal., 142:418 (1993).

    Article  CAS  Google Scholar 

  92. K.C. Taylor, in: “Catalysis: Science and Technology,” J.R. Anderson and M. Boudart, eds, Vol. 5, Springer-Verlag, Berlin (1984).

    Google Scholar 

  93. M. Iwamoto, Symposium on Catalytic Technology for Removal of Nitrogen Oxides, Catal. Soc. Japan, pp. 17–22 (1990).

    Google Scholar 

  94. W. Held, A. König, T. Richter and L. Puppe, SAE Paper 900, 469 (1990).

    Google Scholar 

  95. C. Yokoyama and M. Misono, Catalytic reduction of nitrogen-oxides by propene in the presence of oxygen over cerium ion-exchanged zeolites. 2. Mechanistic study of roles of oxygen and doped metals, J. Catal., 150:9 (1994).

    Article  CAS  Google Scholar 

  96. M. Iwamoto and N. Mizuno, NOx emission control in oxygen-rich exhaust through selective catalytic reduction by hydrocarbon, Proc. Inst. Mech. Eng. Part D, J. Auto Eng., 207:23 (1993).

    Google Scholar 

  97. M. Shelef, Selective catalytic reduction of NOx with N-free reductants, Chem. Rev., 95:209 (1995).

    Article  CAS  Google Scholar 

  98. Y. Li and J.N. Amor, Catalytic decomposition of nitrous oxide on metal exchanged zeolites, Appl. Catal., B1:21 (1992).

    Google Scholar 

  99. Y. Li, T.L. Slager and J.N. Annor, Selective reduction of NOx by methane on Coferrierites. 2. Catalyst characterization, J. Catal., 150:388 (1994).

    CAS  Google Scholar 

  100. J.N. Armor, Cu-ZSM-5 evaluation for automotive NOx control, Appl. Catal., B4:N18 (1994).

    Google Scholar 

  101. R.T. Yang and W.B. Li, Ion-exchanged pillared clays: A new class of catalysts for selective catalytic reduction of NO by hydrocarbons and by ammonia, J. Catal., (1995) (In Press).

    Google Scholar 

  102. S. Sato, Y. Yu-u, H. Yahiro, N. Mizuno and M. Iwamoto, Cu-ZSM-5 zeolite as highly-active catalyst for removal of nitrogen monoxide from emission of diesel-engines, Appl. Catal., 70:L1 (1991).

    CAS  Google Scholar 

  103. Y. Li and J.N. Armor, Selective reduction of NOx by methane on Co-ferrierites. 1. Reaction and kinetic studies, J. Catal., 150:376 (1994).

    CAS  Google Scholar 

  104. W.C. Wong and K. Nobe, Reduction of NO with NH3 on A12O3 and TiO2-supported metal oxide catalysts, Ind. Eng. Chem. Prod. Res. Dev., 25:179 (1986).

    Article  CAS  Google Scholar 

  105. R.T. Yang, J.P. Chen, E.S. Kikkinides, L.S. Cheng and J.E. Cichanowicz, Pillared clays as superior catalysts for selective catalytic reduction of NO by NH3, Ind. Eng. Chem. Res., 31:1440 (1992).

    CAS  Google Scholar 

  106. M.S.A. Baksh, E.S. Kikkinides and R.T. Yang, Characterization by physisorption of a new class of microporous adsorbents: Pillared clays, Ind. Eng. Chem. Res., 31:2181 (1992).

    Article  CAS  Google Scholar 

  107. N.Y. Topsøe, J.A. Dumesic and H. Topsøe, Vanadid/titania catalysts for selective catalytic reduction (SCR) of nitric oxide by ammonia, J. Catal., 151:241 (1995).

    Google Scholar 

  108. A. Kato, S. Matsuda, F. Nakajima, M. Imanari and Y. Watanabe, J. Phys. Chem., 85:1710 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Yang, R.T., Cheng, L.S. (2002). Pillared Clays and Ion-Exchanged Pillared Clays as Gas Adsorbents and as Catalysts for Selective Catalytic Reduction of No. In: Pinnavaia, T.J., Thorpe, M.F. (eds) Access in Nanoporous Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47066-7_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47066-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45218-5

  • Online ISBN: 978-0-306-47066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics