Skip to main content

Dynamics of Liquid Crystals Confined in Random Porous Matrices

  • Chapter
Access in Nanoporous Materials

Part of the book series: Fundamental Materials Research ((FMRE))

  • 361 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Warnock, D.D. Awschalom, and M.W. Shafer, Orientational behavior of molecular liquids in restricted geometries, Phys. Rev. B34:475 (1986).

    Google Scholar 

  2. J. Klafter and J.M. Drake, ed.. “Molecular Dynamics in Restricted Geometries,” Wiley, New York (1989).

    Google Scholar 

  3. C.L. Jackson and G.B. McKenna, The glass transition of organic liquids confined to small pores, J. Non-Cryst. Solids. 131–133:221 (1991)

    Google Scholar 

  4. J.-P. Korb, S. Xu, and J. Jonas, Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses, J. Chem. Phys. 98:2411 (1993).

    Article  CAS  Google Scholar 

  5. P. Pissis, D. Daoukaki-Diamanti, L. Apekis, and C. Christodoulides, The glass transition in confined liquids, J. Phys.: Cond.Matt. 6:L325 (1994).

    CAS  Google Scholar 

  6. J. Schuller, Yu.B. Mel’nichenko, R. Richert, and E.W. Fischer, Dielectric studies of the glass transition in porous media, Phys. Rev. Lett. 73:2224 (1994).

    Google Scholar 

  7. M. Arndt and F. Kremer, Dielectric relaxation in small confining geometries, in: “Dynamics in Small Confining Systems II,” J.M. Drake, J. Klafter, R. Kopelman, S.M. Troian, ed., MRS, Pittsburgh (1995).

    Google Scholar 

  8. Y. Kondo, Y. Kodama, Y. Hirayoshi, T. Mizusaki, A. Hirai, and K. Eguchi, Measurements of surface relaxation time of solid, liquid and adsorbed3He in porous glasses, em Phys. Lett. 123:417 (1987).

    CAS  Google Scholar 

  9. L.M. Steele, C.J. Yeager, and D. Finottelo, Precision specific-heat studies of thin superfluid films, Phys. Rev. Lett. 71:3673 (1993).

    Article  CAS  Google Scholar 

  10. F.M. Aliev, W.I. Goldburg, and X-l. Wu, Concentration fluctuations of a binary liquid mixture in a macroporous glass, Phys. Rev. E47:R3834 (1993).

    Google Scholar 

  11. S.B. Dierker and P. Wiltzius, Random-field transition of a binary liquid in a porous medium, Phys. Rev. Lett. 58:1865 (1987).

    Article  CAS  Google Scholar 

  12. M.C. Goh, W.I. Goldburg, and C.M. Knobler, Phase separation of a binary liquid mixture in a porous medium, Phys. Rev. Lett. 58:1008 (1987).

    CAS  Google Scholar 

  13. B.J. Frisken, and D.S. Cannell, Critical dynamics in the presence of a silica gel, Phys. Rev. Lett. 69:632 (1992).

    Article  CAS  Google Scholar 

  14. W.I. Goldburg, F. Aliev, and X-I. Wu, Behavior of liquid crystals and fluids in porous media, Physica. A213:61 (1995).

    Google Scholar 

  15. M.Y, Lin, S.K. Sinha, J.M. Drake, X.-l. Wu, P. Thiyagarajan, and H.B. Stanley, Study of phase separation of a binary fluid mixture in confined geometry, Phys. Rev. Lett. 72:2207 (1994).

    Article  CAS  Google Scholar 

  16. S. Lacelle, L. Trembaly, Y. Bussiere, F. Cau, and C.G. Fry, NMR studies of phase separation of a binary liquid in a porous glass, Phys. Rev. Lett. 74:5227 (1995).

    Article  Google Scholar 

  17. F.M. Aliev, K.S. Pojivilko, and V.N. Zgonnik, SAXS and DSC studies of surface and size effects for poly(vinyl stearate), Europ. Polym. J. 26:101 (1990).

    Article  CAS  Google Scholar 

  18. F.M. Aliev and V.N. Zgonnik, Thermooptics and thermal stability of poly(alkyl methacrylates) in porous matrices, Europ.Polym. J. 27:969 (1991).

    Article  CAS  Google Scholar 

  19. D. Armitage, and F.P. Price, Size and surface effects on phase transitions, Chem. Phys. Lett. 44:305 (1976).

    Article  CAS  Google Scholar 

  20. M. Kuzma and M.M. Labes,, Liquid crystals in cylindrical pores:effect on transition temperatures and singularities, Molec. Cryst. Liq. Cryst. 100:103 (1983).

    CAS  Google Scholar 

  21. F.M. Aliev and M.N. Breganov, Temperature hysteresis and dispersion of the dielectric constant of a nematic liquid crystal in micropores, Sov.Phys. J. Experim. Theor. Phys. Lett. 47:117 (1988).

    Google Scholar 

  22. F.M. Aliev and M.N. Breganov. Dielectric polarization and dynamics of molecular motion of polar liquid crystals in micropores and macropores, Sov. Phys. J. Experim. Theor. Phys. 68:70 (1989).

    Google Scholar 

  23. F.M. Aliev, and K.S. Pojivilko,, Critical behavior of an interphase layer and the surface properties of a liquid crystal in micropores, Sov.Phys. Jorn. Experim. Theor. Phys. Lett. 49:308 (1989).

    Google Scholar 

  24. G.S. Iannacchione and D. Finotello, Calorimetric study of phase transitions in confined liquid crystals, Phys. Rev. Lett. 69:2094 (1992).

    Article  CAS  Google Scholar 

  25. X-l. Wu, W.I. Goldburg, M.X. Liu, and J.Z Xue, Slow dynamics of isotropic-nematic phase transition in silica gels, Phys. Rev. Lett. 69:470 (1992).

    CAS  Google Scholar 

  26. T. Bellini, N.A. Clark, C.D. Muzny, L. Wu, C.W. Garland, D.W. Schaefer, and B.J. Oliver, Phase behavior of the liquid crystal 8CB in a silica Aerogel, Phys. Rev. Lett. 69:788 (1992).

    Article  CAS  Google Scholar 

  27. G.P. Crawford, D.W. Allender, J.W. Doane, Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindical cavities, Phys. Rew. A45:8693 (1992).

    Google Scholar 

  28. G.P. Crawford, R. Ondris-Crawford, S. Zumer, and J.W. Doane, Anchoring and orientational wetting transitions of confined liquid crystals. Phys. Rev. Lett. 70:1838 (1993).

    Article  CAS  Google Scholar 

  29. G.S. Iannacchione, G.P. Crawford, S. Zumer, J.W. Doane, and D. Finotello. Randomly constrained order in porous glass, Phys. Rev. Lett. 71:2595 (1993).

    Article  CAS  Google Scholar 

  30. S. Kralj, G. Lahajnar, A. Zidansek, N.M. Vilfan, R. Blinc, and M. Kosec, Deuterium NMR of a pentylcyanobipheyl liquid crystal confined in a silica aerogel matrix, Phys. Rev. E48:340 (1993).

    Google Scholar 

  31. G.S. Iannacchione and D. Finotello, Specific heat dependence on orientational order at cilindrically confined liquid crystal phase transitions, Phys. Rev. E50:4780 (1994).

    Google Scholar 

  32. S. Tripathi, C. Rosenblatt, and F.M. Aliev, Orientational susceptibility in porous glass near a bulk nematic-isotropic phase transition, Phys. Rev. Lett. 72:2725 (1994).

    CAS  Google Scholar 

  33. F.M. Aliev and J. Kelly, Dynamics, structure, and phase transitions of ferroelectric liquid crystal confined in a porous matrix, Ferroelectr. 151:263 (1994).

    CAS  Google Scholar 

  34. T. Bellini, N.A. Clark, and D.W. Schaefer, Dynamic light scattering study of nematic and smectic A liquid crystal ordering in silica aerogel, Phys. Rev. Lett. 74:2740 (1995).

    Article  CAS  Google Scholar 

  35. A. Zidansek, S. Kralj, G. Lahajnar, and R. Blinc, Deuteron NMR study of liquid crystals in aerogel matrices, Phys. Rev. E51:3332 (1995).

    Google Scholar 

  36. G. Schwalb, and F.W. Deeg, Pore-size-dependent orientational dynamics of a liquid crystal confined in a porous glass, Phys. Rev. Lett. 74:1383 (1995).

    Article  CAS  Google Scholar 

  37. L. Wu, Z. Zhou, C.W. Garland, T. Bellini, and D.W. Schaefer, Heat-capacity of nematic-isotropic and nematic-smactic-A transitions for octylcyanobiphenyl in silica aerogels, Phys.Rev. E51:2157 (1995).

    Google Scholar 

  38. P.G. de Gennes, Liquid-liquid demixing inside a rigid network. Qualitative features, J. Physical Chem. 88:6469 (1984).

    Google Scholar 

  39. D.A. Huse, Critical dynamics of random-field Ising systems with conserved order parameter, Phys. Rev. B36:5383 (1987).

    Google Scholar 

  40. A.J. Liu, Durian, E. Herbolzheimer, and S.A. Safran, Wetting transition in a cylindrical pore, Phys. Rev. Lett. 65:1897 (1990).

    CAS  Google Scholar 

  41. L. Monette, A. Liu, and G.S. Grest, Wetting and domain-growth kinetics in confined geometries, Phys. Rev. A46:7664 (1992).

    Google Scholar 

  42. A. Martian, M. Cieplak, T. Bellini, and J.R. Banavar, Nematic-isotropic transition in porous media, Phys. Rev. Lett. 72:4113 (1994).

    Google Scholar 

  43. P.G. de Gennes and J. Prost. “The Physics of Liquid Crystals” (second ed.), Clarendon Press, Oxford (1993)

    Google Scholar 

  44. Groupe (Orsay), Dynamics of fluctuations in nematic liquid crystals, J.Chem.Phys. 51:816 (1969).

    Google Scholar 

  45. F.M. Aliev and K.S. Pojivilko, Determination of the structural properties of porous glasses by small-angle X-ray diffractometry and electron microscopy, Sov.Phys.Solid State. 30:1351 (1988).

    Google Scholar 

  46. P. Levitz, G. Ehret, S.K. Sinha, and J.M. Drake, Porous vycor glass:the microstructure as probed by electron microscopy, direct energy transfer, small-angle scattering, and molecular adsorbtion, J. Chem. Phys. 95:6151 (1991).

    Article  CAS  Google Scholar 

  47. F.M. Aliev, Liquid crystals-porous glasses heterogenous systems as materials for investigation of interfacial properties and finite-size effects, Mol. Cryst. Liq. Cryst. 243:91 (1994).

    CAS  Google Scholar 

  48. M. Randeria, J. Sethna, and R.G. Palmer, Low-frequency relaxation in Ising spin-glasses, Phys. Rev. Lett. 54:1321 (1985).

    Article  CAS  Google Scholar 

  49. G. Williams, Molecular motion in glass-forming systems, J. Non-Cryst. Solids. 131–133:1 (1991).

    Google Scholar 

  50. A. Levstik, T. Carlsson, C. Filipie, I. Levstik, and B. Zekš, Goldstone mode and soft mode at the smectic-A-smectic-C’ phase transition studied by dielectric relaxation, Phys. Rev., A35:3527 (1987).

    Google Scholar 

  51. R. Blinc, and B. Zěkš, Dynamics of helicoidal ferroelectric smectic-C liquid crystal Phys. Rev. A18:740 (1978)

    Google Scholar 

  52. Ph. Martinot-Lagard and G. Durand, Dielectric relaxation in a ferroelectric liquid crystal, J. de Phys. 42:269 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Aliev, F.M. (2002). Dynamics of Liquid Crystals Confined in Random Porous Matrices. In: Pinnavaia, T.J., Thorpe, M.F. (eds) Access in Nanoporous Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47066-7_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-47066-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45218-5

  • Online ISBN: 978-0-306-47066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics