Skip to main content

Electronic Structure Theory for Zeolites

  • Chapter
Access in Nanoporous Materials

Part of the book series: Fundamental Materials Research ((FMRE))

  • 373 Accesses

Conclusion

Zeolites have many industrial applications, and there appear to be potential new uses for them, such as templates for semiconductor supralattices, which take advantage of the electronic properties of the semiconductor and framework. The large size and complexity of these systems have made them a challenge to solid state theorists. In this article we have tried to demonstrate that electronic structure based methods, although computationally demanding, are now able to address some of the important issues to obtain an understanding on a microscopic scale of the properties of these materials. Solid state methods provide a unified framework for studying both reactivity and structure of zeolites. The field is wide open and enormously exciting. The tremendous advances in electronic structure theory and computing power now finally make these systems accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. V. Smith, Topochemistry of zeolites and related materials. 1. Topology and geometry, Chem. Rev. 88:149 (1988).

    Article  CAS  Google Scholar 

  2. W. Meier and D. Olson, “Atlas of Zeolite Structure Types”, 3rd ed. Butterworth-Heineman, London, (1992).

    Google Scholar 

  3. J. B. Higgins, Silica zeolites and clathrasils, in: “Silica: Physical Behavior, Geochemistry, and Materials Applications”, P.J. Heaney, C.T. Prewitt, and G.V. Gibbs, eds., Reviews in Mineralogy, Vol. 29, Mineralogical Soc. of America, Washington DC (1994).

    Google Scholar 

  4. D. W. Breck. “Zeolite Molecular Sieves, Structure, Chemistry. and Use”. John Wiley & Sons, New York (1974).

    Google Scholar 

  5. R. Szostack, “Molecular Sieves: Principles of Synthesis and Identification”, Van Nostrand Reinholg, New York (1989).

    Google Scholar 

  6. C. R. A. Catlow, ed., “Modelling of Structure and Reactivity in Zeolites”, Academic Press, London (1992).

    Google Scholar 

  7. A.F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites, Svenska Vetenskaps akademiens Handlingar, Stockholm 17:120 (1756); A translation can be found in J.L. Schlenker and G. H. Kühl, in “Proc. 9th Intl. Conference on Zeolites 1993”, R. von. Ballmoos, ed., Butterworth-Heineman. Boston (1993).

    Google Scholar 

  8. A. Dyer, Uses of Natural Zeolites, Chemistry and Industry, 241 (1984).

    Google Scholar 

  9. J. E. Mac Dougall and G. D. Stuckey, Assembly of supra-nanoclusters within crystalline and amorphous 3-D structures, in: “On Clusters and Clustering, From Atoms to Fractals”, P. J. Reynolds, ed.. Elsevier Science Publishers (1993).

    Google Scholar 

  10. N. Keskar and J. Chelikowsky. Structural Properties of Nine Silica Polymorphs, Phys. Rev. B46:1 (1992).

    Google Scholar 

  11. N. Binggeli and J. Chelikowsky, Structural transformation of quartz at high pressures, Nature 353:344 (1991).

    Article  CAS  Google Scholar 

  12. J.R. Chelikowsky, N. Troullier, J.L. Martins, and H.E. King, Jr., Pressure Dependence of the Structural Properties of a-Quartz Near the Amorphous Transition, Phys. Rev. B44:489 (1991).

    Google Scholar 

  13. D. Allan and M. Teter, Non-local pseudopotential in molecular dynamics density functional theory, application to SiO2, Phys. Rev. Lett. 59:1136 (1987).

    Article  CAS  Google Scholar 

  14. D. Allan and M. Teter, Local density approximation total energy calculations for silica and titania structure and defects, J. Am. Ceram. Soc. 73:3247 (1990).

    CAS  Google Scholar 

  15. X. Gonze, D. Allan, and M. Teter, Dielectric Tensor, effective charges, and phonons in a-quartz by variational density-functional perturbation theory, Phys. Rev. Lett. 68:3603 (1992).

    Article  CAS  Google Scholar 

  16. F. Liu, S. Garfolini, R. King-Smith, and D. Vanderbilt, First-principles Studies on Structural Properties of b-cristobalite, Phys. Rev. Lett. 70:2750 (1993); and Liu et al. Reply, Phys. Rev. Lett. 71:3611 (1993).

    CAS  Google Scholar 

  17. B. Silvi, M. Allavena, Y. Hannachi, and P. D’Arco, Pseudopotential periodic Hartree-Fock study of the cristobalite phases of silica and germanium dioxide, J. Am. Cer. Soc. 75:1239 (1992).

    CAS  Google Scholar 

  18. Those interested in the applications of first principle methods to SiO2 polymorphs we refer to an excellent review article by R. E. Cohen, First-principles theory of crystalline SiO2, in: “Silica: Physical Behavior, Geochemistry, and Materials Applications”, P.J. Heaney, C.T. Prewitt, and G.V. Gibbs, eds., Reviews in Mineralogy, Vol. 29, Mineralogical Soc. of America, Washington DC (1994).

    Google Scholar 

  19. R.E. Cohen, Bonding and elasticity of stishovite SiO2, at high pressure: linearized augmented plane wave calculation, Amer. Mineralogist 76:733 (1991).

    CAS  Google Scholar 

  20. K.J. Kingma, R.E. Cohen, R.J. Hemley, and H-K. Mao, Transformation of stishovite to a denser phase at lower-mantle pressures, Nature 374:242 (1995).

    Article  Google Scholar 

  21. B. Silvi, Application of quantum chemistry to geochemistry and geophysics, Journal of Molecular Structure (Theorchem) 226:129 (1991).

    Google Scholar 

  22. R. Car and M. Parrinello, Unified approach for molecular dynamics and density functional theory, Phys. Rev. Lett. 55:2471 (1985).

    Article  CAS  Google Scholar 

  23. D. A. Drabold and 0. F. Sankey, Maximum Entropy Approach in the Electronic Structure Problem, Phys. Rev. Lett. 70:3631 (1993).

    Article  CAS  Google Scholar 

  24. O. F. Sankey and D. J. Niklewsky, Ab initio multicenter tight-binding model fro molecular-dynamics simulations and other applications in covalent systems, Phys. Rev. B40:3979 (1989).

    Google Scholar 

  25. M. S. Stave, J. B. Nicholas, Density functional study of cluster models of zeolites. 1. Structure and acidity of hydroxyl groups in disiloxane analogs, J. Phys. Chem. 97:9630 (1993).

    Article  CAS  Google Scholar 

  26. A. C. Hess, V. R. Saundres, Periodic ab initio Hartree-Fock calculations of the low-symmetry mineral kaolinite, J. Phys. Chem. 96:4367 (1992).

    Article  CAS  Google Scholar 

  27. L. Campana, A. Selloni, J. Weber, A. Pasquarello, I. Papai, and A. Goursot, First principles molecular dynamics calculation of the structure and acidity of a bulk zeolite, Chem. Phys. Lett. 226:245 (1994); L. Campana, A. Selloni, J. Weber, and A. Goursot, Structure and stability of zeolite offretite under Si4+/(A143,M+) substitution (M=Na,K), submitted to J. of Phys. Chem..

    Article  CAS  Google Scholar 

  28. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64:1045 (1992).

    Article  CAS  Google Scholar 

  29. E. Kassab, K. Seiti, and M. Allavena, Determination of structure and acidity scales in zeolite systems by ab initio and pseudopotential calculations, J. Phys. Chem. 92:6705 (1988).

    Article  CAS  Google Scholar 

  30. I. Pápai, A. Goursot, and F. Fajula, Density functional calculations on model clusters of zeolite-b, J. Phys. Chem. 98:4654 (1994).

    Google Scholar 

  31. J. Sauer, Structure and reactivity of zeolite catalysts: atomistic modelling using ab initio techniques, in: “Zeolites and Related Microporous Materials: State of the Art 1994”, Studies in Surface Sciences and Catalysis, Vol. 84, Elsvier Science B.V. (1994).

    Google Scholar 

  32. J. C. White and A. C. Hess, Periodic Hartree-Fock study of siliceous mordenite, J. Phys. Chem. 97:6398 (1993).

    CAS  Google Scholar 

  33. J. C. White and A. C. Hess, An examination of the electrostatic potential of silicalite using periodic Hartree-Fock theory, J. Phys. Chem. 97:8703 (1993).

    CAS  Google Scholar 

  34. R. Dovesi, C. Pisani, C. Roetti, M. Causa, and V.P. Sounders, CRYSTAL, in “Quantum Chemistry Programs Exchange”, Publication 577, University of Indiana (1988).

    Google Scholar 

  35. A. Redondo and P. J. Hay, Quantum chemical studies of acid sites in zeolite ZSM-5, J. Phys. Chem. 97:11754 (1993).

    Article  CAS  Google Scholar 

  36. R. M. Wentzcovitch and G. D. Price, High pressure studies of mantle minerals by ab initio variable cell shape molecular dynamics, in: “Modeling of Silicate Matrials”, B. Silvi and P. D’Arco, eds., Kluwer Academic Press in press.

    Google Scholar 

  37. M. Parrinello and A. Rahman, Crystal structure and pair potentials: a molecular dynamics study, Phys. Rev. Lett. 45:1196 (1980).

    Article  CAS  Google Scholar 

  38. R. M. Wentzcovitch, J. L. Martins, and G. D. Price, Ab initio molecular dynamics with variable cell shape: application to MgSiO3, Phys. Rev. Lett. 70:3947 (1993); R. M. Wentzcovitch, N. L. Ross, and G. D. Price, Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures, Phys. of the Earth and Planetary Interiors in press.

    Article  CAS  Google Scholar 

  39. R. M. Wentzcovitch, D. A. Hugh-Jones, R. J. Angel, and G. D. Price, Ab initio study of MgSiO3 C2 /c enstatite, Phys. Chem. of Minerals in press.

    Google Scholar 

  40. D.M. Teter, G.V. Gibbs, M.B. Boisen Jr., M.P. Teter, and D.C. Allan, First-principles study of several novel silica framework structures, submitted to Phys. Rev. B.

    Google Scholar 

  41. M.-Z. Huang and W.Y. Ching, First-principles calculation of second harmonic generation in a-quartz, Ferroelectrics 156:105 (1994).

    Google Scholar 

  42. H. Zhong, Z.H. Levine, D.C. Allan, and J.W. Wilkins, Phys. Rev. in press.

    Google Scholar 

  43. S. Singh, in: “Handbook of Laser Science”, M.J. Weber, ed., CRC Press, Cleveland OH, (1986).

    Google Scholar 

  44. Y.-N. Xu and W.Y. Ching, Electronic and optical properties of all polymorphic forms of silicon dioxide, Phys. Rev. B44:11048 (1991).

    Google Scholar 

  45. N.J. Henson, A.K. Cheetham, and J.D. Gale, Theoretical calculations on silica frameworks and their correlation with experiment, Chemistry of Materials 6:1647 (1994).

    Article  CAS  Google Scholar 

  46. A.A. Demkov, J. Ortega, O.F. Sankey, and M.P. Grumbach, Electronic structure approach for complex silicas, Phys. Rev. B52:1618 (1995).

    Google Scholar 

  47. R. Wyckoff, The crystal structure of the high-temperature form of cristobalite (SiO2), Am. J. Sci 9:448 (1925).

    CAS  Google Scholar 

  48. W. Nieuwenkamp, Über die struktur von hoch-cristobalit, Z. Kristallographie 96:454 (1937).

    CAS  Google Scholar 

  49. A. Wright and A. Leadbetter, The structure of the β-cristobalite phases of SiO2 and A1P04, Phil. Mag. 31:1391 (1975).

    CAS  Google Scholar 

  50. M. O’Keeffe and B. Hyde, Cristobalites and topologically-related structures, Acta. Cryst. B32:2923 (1977).

    Google Scholar 

  51. D. M. Hatch and S. Ghose, The a-b phase transition in cristobalite, SiO2, Phys. Chem Min. 17:554 (1991).

    Article  CAS  Google Scholar 

  52. I. P. Swainson and M. T. Dove, On thermal expansion of b-cristobalite, Phys. Rev. Lett. 71:3610 (1993).

    CAS  Google Scholar 

  53. W. Harrison, “Electronic Structure and the Properties of Solids” W.H. Freeman and Company, San Francisco, (1980).

    Google Scholar 

  54. L. D. Landau and E. M. Lifshitz, “Statistical Physics”, Pergamon Press, New York (1989).

    Google Scholar 

  55. G.V. Gibbs, Molecules as models for bonding in silicates, Amer. Mineral. 67:421 (1982).

    CAS  Google Scholar 

  56. I. Petrovic, A. Navrotsky, M. Davis, and S. I. Zones, Thermochemical study of the stability of frameworks in high silica zeolites, Chem. Mater. 5:1805 (1993).

    Article  CAS  Google Scholar 

  57. F. Liebau, Zeolites and clathrasils-two distinct classes of framework silicates, Zeolites 3, 191 (1983).

    Article  CAS  Google Scholar 

  58. H. Gies, Studies on clathrasils. III., Zeit. Kristallogr. 164:247 (1983).

    CAS  Google Scholar 

  59. W.F. Claussen, Suggested structures of water in inert gas hydrates, J. Chem. Phys. 19:259 (1951).

    CAS  Google Scholar 

  60. W.F. Claussen, A second water structure for inert gas hydrates, J. Chem. Phys. 19:1425 (1951).

    CAS  Google Scholar 

  61. B. Kamb, A clathrate crystalline form of silica, Science 148:232 (1965).

    CAS  Google Scholar 

  62. G.B. Adams, M. O’Keeffe, A.A. Demkov, O.F. Sankey, and Y. Huang, Wide-band-gap Si in open fourfold-coordinated clathrate structures, Phys. Rev. B49:8048 (1994).

    Google Scholar 

  63. V.N. Bogomolov, E.L. Lutsenko. V.P. Petranovskii, and S.V. Kholodkevich, Absorption spectra of three-dimensionally-ordered system of 12-Å particles, JETP Lett. 23:483 (1976); V.N. Bogomolov, M.S. Ivanova, and V.P. Petranovskii, Synthesis and optical and photoelectric properties of three-dimensional superlattices of CdS clusters in type A and X zeolites, Sov. Tech. Phys. Lett. 17:403 (1991).

    Google Scholar 

  64. Y. Wang and N. Herron, Photoluminescence and relaxation dynamics of CdSe superclusters in zeolites. J. Phys. Chem. 92:4988 (1988).

    CAS  Google Scholar 

  65. J.E. MacDougall, H. Eckert, G.D. Stucky, N. Herron. Y. Wang, K. Moller, T. Bein, and D. Cox, Synthesis and characterization of III-V semiconductor clusters: GaP in zeolite Y, J. Am. Chem. Soc. 111:8006 (1989).

    CAS  Google Scholar 

  66. K. Tamura, S. Hosokawa, H. Endo, S. Yamasaki, and H. Oyanagi, The isolated Se chains in the channels of mordenite crystal, J. Phys. Soc. Japan 55:528 (1986).

    CAS  Google Scholar 

  67. Y. Katayama, K. Maruyama, and H. Endo, Microclusters confined in zeolite cage, J. Non-cryst. Solids 117:485 (1990).

    Article  Google Scholar 

  68. J.B. Parise, J.E. MacDougall, N. Herron, R. Farlee, A.W. Sleight, Y. Wang, T. Bein, K. Moller. and L.M. Moroney, Characterization of Se-loaded molecular sieves A, X, Y, A1PO-5 and mordenite, Inorg. Chem. 27:221 (1988).

    Article  CAS  Google Scholar 

  69. J.B. Smeulders, M.A. Hefni, A.A.K. Klaassen, E. de Boer, U. Westphal, and G. Geismar. Na3+4 clusters in sodalite, Zeolites 7:347 (1987).

    Article  CAS  Google Scholar 

  70. K. Moller, T. Bein, N. Herron, W. Mahler, and Y. Wang. Encapsulation of lead sulfide molecular clusters into solid matrices. Structural analysis with x-ray adsorption spectroscopy, Inorg. Chem. 28:2914 (1989).

    Article  CAS  Google Scholar 

  71. M.G. Samant and M. Boudart, Support effect on electronic structure of platinum clusters in Y zeolite, J. Phys. Chem. 95:4070 (1991).

    Article  CAS  Google Scholar 

  72. F. Blatter, R.W. Blazey. and A.M. Portis, Conduction-electron spin resonance of Na-Cs alloys in zeolite Y, Phys. Rev. B44:2800 (1991).

    Google Scholar 

  73. T. Sun and K. Seff, Crystal structures of the potassium clusters in the sodalite cavities of zeolites A and X, J. Phys. Chem 97:5213 (1993).

    CAS  Google Scholar 

  74. G.D. Stucky and J.E. MacDougall, Quantum confinement and host/guest chemistry: probing a new dimension, Science 247:669 (1990).

    CAS  Google Scholar 

  75. G.A. Ozin, A. Kuperman, and A. Stein, Advanced zeolite materials science, Angew. Chem. Int. Ed. Engl. 28:359 (1989).

    Article  Google Scholar 

  76. N.P. Blake, V. I. Srdanov, and H. Metiu, A model for electron — zeolite Na+ — zeolite interactions: frame charges and ionic sizes, J. Phys. Chem. 99:2127 (1995).

    Article  CAS  Google Scholar 

  77. O.F. Sankey, D.J. Niklewski, D.A. Drabold, and J.D. Dow, Molecular-dynamics determination of electronic and vibrational spectra, and equilibrium structures of small Si clusters, Phys. Rev. B41:12750 (1990).

    Google Scholar 

  78. K. Ragavachari and V. Logovinsky, Structure and bonding in small silicon clusters, Phys. Rev. Lett. 55:2853 (1986).

    Google Scholar 

  79. D. Tomanek and M. A. Schliiter, Structure and bonding of small semiconductor clusters, Phys. Rev. B36:1208 (1987).

    Google Scholar 

  80. A.A. Demkov and O.F. Sankey, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Demkov, A.A., Sankey, O.F. (2002). Electronic Structure Theory for Zeolites. In: Pinnavaia, T.J., Thorpe, M.F. (eds) Access in Nanoporous Materials. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47066-7_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-47066-7_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45218-5

  • Online ISBN: 978-0-306-47066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics