Skip to main content

Covalent Carbon Compounds: From Diamond Crystallites to Fullerene-Assembled Polymers

  • Chapter
Electronic Properties of Solids Using Cluster Methods

Part of the book series: Fundamental Materials Research ((FMRE))

  • 150 Accesses

Conclusion

As is clear from the work discussed here and elsewhere in this book there are a variety of ways in which cluster calculations are impacting the understanding and design of solid state properties. Also illustrated in the above discussion is the fact that each theory and numerical algorithm has specific subfields where it is most appropriate and the discussion of this topic necessitates equal emphasis on both the specific theory and the application. With respect to density-functional based calculations several known results have been reiterated here. First, it is possible to obtain very accurate geometries, vibrational modes, electronic densities, polarizabilities and hyper polarizabilities within a local approximation of the theory. Second, the overbinding that is present in existing local approximations to the density-functional theory can be circumvented if the cluster energies are calculated within the generalized gradient approximation. Finally, we presented results that show one example where the generalized gradient approximation significantly improves results. In contrast to the local-density-approximation which leads to qualitatively incorrect results for the methyl-methane hydrogen abstraction energy, we show that the generalized gradient approximation leads to results that are almost quantitatively correct.

With respect to applications we have shown that the density-functional method can be used to learn about growth processes that occur during the fabrication of solid-state materials, calculate barriers associated with formation, understand the optical response of an assembly of clusters, and use theoretical geometries, electronic structures and vibrational modes to aid experimentalists in the characterization of solids composed of clusters. While the examples discussed here touch upon a reasonably wide range of uses for cluster calculations in solid-state physics many other uses have been discussed elsewhere. There is little doubt that calculations on such systems will become increasingly important as theorists continue to improve their computational means for exploring such problems and as experimentalists enhance their abilities to fabricate cluster based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev., A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  2. M. R. Pederson and K. A. Jackson, Phys. Rev, B 41, 7453 (1990); (b)K. A. Jackson and M. R. Pederson, Phys. Rev. B. 42,3276 (1990); M. R. Pederson and K. A. Jackson, Phys. Rev. B 43. 7312 (1991).

    Article  ADS  Google Scholar 

  3. M. R. Pederson, K. A. Jackson and W. E. Pickett. Phys. Rev. B 44, 3891 (1991).

    Article  ADS  Google Scholar 

  4. A. A. Quong, M..R. Pederson and J. L. Feldman, Sol. Stat. Comm. 87, 535 (1993).

    Article  ADS  Google Scholar 

  5. M. R. Pederson, Chem. Phys. Lett. 230, 54 (1994).

    Article  ADS  Google Scholar 

  6. M. R. Pederson and A. A. Quong, Phys. Rev. B 46, 13584 (1992).

    Article  ADS  Google Scholar 

  7. A. A. Quong and M. R. Pederson, Phys. Rev B 46, 12906 (1992).

    Article  ADS  Google Scholar 

  8. M. R. Pederson and A. A. Quong, Phys. Rev. Lett. 74, 2319 (1995).

    Article  ADS  Google Scholar 

  9. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  10. J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985); J. P. Perdew and Y. Wang. Phys. Rev. B. 33,8800 (1986); J. P. Perdew, Phys. Rev. B 33, 8822 (1986), Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298, (1991); J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  11. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  12. E. E. Lafon and C. C. Lin, Phys. Rev. 152, 579 (1966).

    Article  ADS  Google Scholar 

  13. A. H. Stroud, Approximate Calculations of Multiple Integral, (Prentice-Hall, Englewood Cliffs, NJ, 1971).

    Google Scholar 

  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1988).

    MATH  Google Scholar 

  15. M. R. Pederson, A. A. Quong, J. Q. Broughton and J. L. Feldman, Comp. Mat. Sci. 2, 129 (1994).

    Article  Google Scholar 

  16. For a compilation of articles on subjects related to diamond chemical vapor deposition see: J. Mater. Res. 11 (1990).

    Google Scholar 

  17. P. Ecklund, Bull. Am. Phys. Soc. 37, 191 (1992).

    Google Scholar 

  18. A. F. Hebard, R. C. Haddon, R. M. Fleming, and A. R. Korton, Apl. Phys. Lett. 59, 2109 (1992).

    Article  ADS  Google Scholar 

  19. P. Ecklund et al. (to appear).

    Google Scholar 

  20. Z. H. Kafafi, J. R. Lindle, R. G. S. Pong, F. J. Bartoli, L. J. Lingg and J. Milliken, Chem. Phys. Lett. 188, 492 (1992); Z. H. Kafafi, F. J. Bartoli, and J. R. Lindle, Phys. Rev. Lett. 68, 2702 (1992).

    Article  ADS  Google Scholar 

  21. P. Zhou etal., Chem. Phys. Lett. 211, 337 (1993); Y. Wang et al., Chem. Phys. Lett. 217, 413 (1994); A. M. Rao et al., Science 259,955 (1993).

    Article  ADS  Google Scholar 

  22. O. Chauvet, G. Oszlanyi, L. Forro, P. W. Stephens, M. Tegze, G. Faigel and A. Janossy, Phys. Rev. Lett. 72, 2721 (1994).

    Article  ADS  Google Scholar 

  23. M. C. Martin, D. Koller and L. Mihaly, Phys. Rev. B 47, 14607 (1993); M. C. Martin et al., Phys. Rev. B 51,3210(1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pederson, M.R. (2002). Covalent Carbon Compounds: From Diamond Crystallites to Fullerene-Assembled Polymers. In: Kaplan, T.A., Mahanti, S.D. (eds) Electronic Properties of Solids Using Cluster Methods. Fundamental Materials Research. Springer, Boston, MA. https://doi.org/10.1007/0-306-47063-2_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47063-2_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45010-5

  • Online ISBN: 978-0-306-47063-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics