Skip to main content

Part of the book series: Selected Topics in Superconductivity ((STIS))

  • 309 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. B. Montgomery, “Review of fusion system magnet problems,” Proc. IEEE 13th Sympo. Fusion Engr. (IEEE Catalogue No. 89CH2820-9, 1989), 27.

    Google Scholar 

  2. R. J. Thome, J. B. Czirr, and J. H. Schultz, “Survey of selected magnet failures and accidents,” Am. Nucl. Soc. 7th Topical Conf. on Fusion Engr. (1986).

    Google Scholar 

  3. W. H. Cherry and J. I. Gittleman, “Thermal and electrodynamic aspects of the superconductive transition process,” Solid State Electronics 1, 287 (1960).

    Article  Google Scholar 

  4. Z. J. J. Stekly, “Theoretical and experimental study of an unprotected superconducting coil going normal,” Adv. Cryogenic Eng. 8, 585 (1963).

    Google Scholar 

  5. P. F. Smith, “Protection of superconducting coils,” Rev. Sci. Instrum. 34, 368 (1963).

    Google Scholar 

  6. C. N. Whetstone and C. Roos, “Thermal transitions in superconducting NbZr alloys,” J. Appl. Phys. 36, 783 (1965).

    Article  Google Scholar 

  7. V. V. Altov, M. G. Kremlev, V. V. Sytchev and V. B. Zenkevitch, “Calculation of propagation velocity of normal and superconducting regions in composite conductors,” Cryogenics 13, 420 (1973).

    Google Scholar 

  8. D. Hagendorn and P. Dullenkopf, “The propagation of the resistive region in high current density coils,” Cryogenics 14, 264 (1974).

    Google Scholar 

  9. L. Dresner, “Propagation of normal zones in composite superconductors,” Cryogenics 16, 675 (1976).

    Article  Google Scholar 

  10. K. Ishibashi, M. Wake, M. Kobayashi and A. Katase, “Propagation velocity of normal zones in a sc braid,” Cryogenics 19, 467 (1979).

    Google Scholar 

  11. B. Turck, “About the propagation velocity in superconducting composites,” Cryogenics 20, 146 (1980).

    Article  Google Scholar 

  12. Z. J. J. Stekly, “Behavior of superconducting coil subjected to steady local heating within the windings,” J. Appl. Phys. 37, 324 (1966).

    Article  Google Scholar 

  13. M. N. Wilson, “Computer simulation of the quenching of a superconducting magnet,” (Rutherford High Energy Physics Laboratory Memo RHEL/M151, 1968).

    Google Scholar 

  14. J. E. C. Williams, “Quenching in coupled adiabatic coils,” IEEE Trans. Magn. MAG-21, 396 (1985).

    Google Scholar 

  15. K. Funaki, K. Ikeda, M. Takeo, K. Yamafuji, J. Chikaba and F. Irie, “Normal-zone propagation inside a layer and between layers in a superconducting coil,” IEEE Trans. Magn. MAG-23, 1561 (1987).

    Google Scholar 

  16. V. Kadambi and B. Dorri, “Current decay and temperatures during superconducting magnet coil quench,” Cryogenics 26, 157 (1986).

    Article  Google Scholar 

  17. C. H. Joshi and Y. Iwasa, “Prediction of current decay and terminal voltages in adiabatic superconducting magnets,” Cryogenics 29, 157 (1989).

    Article  Google Scholar 

  18. K. Kuroda, S. Uchikawa, N. Hara, R. Saito, R. Takeda, K. Murai, T. Kobayashi, S. Suzuki, and T. Nakayama, “Quench simulation analysis of a superconducting coil,” ibid., 814 (1989).

    Google Scholar 

  19. Zong-Ping Zhao, “Thermo-electrodynamics of the resistive transition of superconductors in epoxy-resin impregnated superconducting magnets,” (Dr. Eng. thesis, Dept. of Electrical Engineering, Tokyo Denki University, 1990; unpublished.)

    Google Scholar 

  20. A. Ishiyama, H. Matsumura, W. Takita, and Y. Iwasa, “Quench propagation analysis in adiabatic superconducting windings,” IEEE Trans. Magn. 27, 2092 (1991).

    Google Scholar 

  21. R. H. Bellis and Y. Iwasa, “Quench propagation in high T c superconductors,” Cryogenics 34, 129 (1994).

    Article  Google Scholar 

  22. B. J. Maddock and G. B. James, “Protection and stabilisation of large superconducting coils,” Proc. Inst. Electr. Eng. 115, 543 (1968).

    Google Scholar 

  23. T. Ishigohka and Y. Iwasa, “Protection of large superconducting magnets: a normal-zone voltage detection method,” Proc. 10th Sympo. Fusion Eng. (IEEE CH 1916-6/83/0000-2050, 1983), 2050.

    Google Scholar 

  24. L. Dresner, “Superconductor stability’ 90: a review,” Cryogenics 31, 489 (1991).

    Google Scholar 

  25. J. E. C. Williams (an internal report, FBNML, unpublished 1992).

    Google Scholar 

  26. Chandrashekhar Haihar Joshi, “Thermal and electrical characteristics of adiabatic superconducting solenoids during a spontaneous transition to the resistive state,” (Sc. D. Thesis, Dept. of Mech. Engineering, MIT, 1987; unpublished).

    Google Scholar 

  27. H. Lim, Y. Iwasa, J. L. Smith, Jr., “Normal zone propagation in a cryocoolercooled Nb3Sn tape-wound magnet,” Cryogenics 35, (1995).

    Google Scholar 

  28. J. B. Kim (an internal report, FBNML, unpublished 1994).

    Google Scholar 

  29. A. Zhukovsky, Y. Iwasa, E. S. Bobrov, J. Ludlam, J. E. C. Williams, R. Hirose, Z. Ping Zhao, “750 MHz NMR Magnet Development,” IEEE Trans. Magn. 28, 644 (1992).

    Article  Google Scholar 

  30. Mamoon I. Yunus, Yukikazu Iwasa, and John E. C. Williams, “AC-loss-induced quenching in multicoil adiabatic superconducting magnets,” Cryogenics 35, (1995).

    Google Scholar 

  31. See, for example, Y. Iwasa, “HTS magnets,” Advances in Superconductivity — V (ISS92), Eds. Y. Bando and H. Yamauchi (Springer-Verlag Tokyo, 1993), 1205.

    Google Scholar 

  32. See, for example, P. Haldar, J. G. Hoehn, Jr., L. R. Motowildo, U. Balachandran, Y. Iwasa, “Fabrication and characteristics of a test magnet from HTS Bi-2223 silver-clad tapes,” Adv. Cryogenic Eng. 40, 313 (1994).

    Google Scholar 

  33. T. Hikata, K. Muranaka, S. Kobayashi, J. Fujikami, M. Ueyama, T. Kato, T. Kaneko, H. Mukai, K. Ohkura, N. Shibuta, and K. Sato, “1 km-class Ag-sheathed Bi-based superconducting wires and applications,” 1994 Int’l Workshop on Superconductivity (Kyoto, Japan, June 1994), 69.

    Google Scholar 

  34. J. P. McEvoy, Jr., L. C. Morris, and J. F. Panas, “Conduction cooling of a traveling wave maser superconducting magnet in a closed-cycle refrigerator,” Adv. Cryogenic Eng. 10, 486 (1965).

    Google Scholar 

  35. M. T. G. van der Laan, R. B. Tax, H. H. J. ten Kate, L. J. M. van de Klundert, “The cryogenic system of a conduction cooled 12K superconducting magnet,” Cryogenics 30 September Supplement, 163 (1990).

    Google Scholar 

  36. S. Masuyama, H. Yamamoto, and Y. Matsubara, “A NbTi split magnet directly cooled by a cryocooler,” IEEE Trans. Appl. Superconduc. 3, 262 (1993).

    Google Scholar 

  37. Mark E. Vermilyea and Constantinos Minas, “A cryogen-free superconducting magnet design for maglev vehicle applications,” ibid., 444 (1993).

    Google Scholar 

  38. Y. Iwasa, “High-field HTS magnets operating at 20K,” 7th Conf. on Superconductivity and Applications (Buffalo, NY, September 1994).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

(2002). Protection. In: Case Studies in Superconducting Magnets. Selected Topics in Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/0-306-47062-4_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47062-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44881-2

  • Online ISBN: 978-0-306-47062-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics