Skip to main content

Part of the book series: Selected Topics in Superconductivity ((STIS))

  • 297 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ries and H. Brechna, “AC losses in superconducting pulsed magnets,” (KFK Report 1372, Gesellschaft fur Kernforschung M.B.H. Karlsruhe, 1972).

    Google Scholar 

  2. J.P. Soubeyrand and B. Turck, “Losses in superconducting composite under high rate pulsed transverse field,” IEEE Trans. Magn. MAG-15, 248 (1979).

    Article  ADS  Google Scholar 

  3. T. Ogasawara, Y. Takahashi, K. Kanbara, Y. Kubota, K. Yasohama, and K. Yasukochi, “Alternating field losses in superconducting wires carrying dc transport currents. Part 2: multifilamentary composite conductors,” Cryogenics 21, 97 (1981).

    Article  Google Scholar 

  4. I. Hlásnik, “Review of ac losses in superconductors,” IEEE Trans. Magn. MAG-17, 2261 (1981).

    Article  ADS  Google Scholar 

  5. W.J. Carr, Jr., “Conductivity, permeability, and dielectric constant in a multifilament superconductor,” J. Appl. Phys. 46, 4043 (1975).

    Article  ADS  Google Scholar 

  6. J.F. Maguire (an internal memo, FBNML, unpublished 1979).

    Google Scholar 

  7. A.M. Hatch, R.C. Beals, and Y. Iwasa (Avco Everett Research Laboratory report, unpublished 1975).

    Google Scholar 

  8. R.W. Fast, W.W. Craddock, M. Kobayashi, and M.T. Mruzek, “Electrical and mechanical properties of lead/tin solders and splices for superconducting cables,” Cryogenics 28, 7 (1988).

    Article  Google Scholar 

  9. J.W. Hafstrom, D.H. Killpatrick, R.C. Niemann, J.R. Purcell, and H.R. Thresh, “Joining NbTi superconductors by ultrasonic welding,” IEEE Trans. Magn. MAG-13, 94 (1977).

    Article  ADS  Google Scholar 

  10. Magnet Technology Division, FBNML (internal reports, unpublished 1993).

    Google Scholar 

  11. Y. Kawate, R. Ogawa, and R. Hirose (personal communication, 1994).

    Google Scholar 

  12. H. Maeda, O. Tsukamoto, and Y. Iwasa, “The mechanism of friction motion and its effect at 4.2K in superconducting magnet winding models,” Cryogenics 22, 287 (1982).

    Article  Google Scholar 

  13. Y. Iwasa, J.F. Maguire, and J.E.C. Williams, “The effect on stability of frictional decoupling for a composite superconductor,” Proc. 8th Symp. on Engr. Problems of Fusion Research, (IEEE Publication 79CH1441-5, 1979), 1407.

    Google Scholar 

  14. Y. Yasaka and Y. Iwasa, “Stress-induced epoxy cracking energy release at 4.2 K in epoxy-coated superconducting wires,” Cryogenics 24, 423 (1984).

    Article  Google Scholar 

  15. S. Fuchino and Y. Iwasa, “A cryomechanics technique to measure dissipative energies of ~10 nJ,” Exp. Mech. 30, 356 (1990).

    Article  Google Scholar 

  16. E.S. Bobrov and J.E.C. Williams, “Direct optimization of the winding process for superconducting solenoid magnets (linear programming approach),” IEEE Trans. Magn. MAG-17, 447 (1981).

    Article  ADS  Google Scholar 

  17. E.S. Bobrov, J.E.C. Williams, and Y. Iwasa, “Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 2. Shear stress-induced epoxy fracture as the principal source of premature quenches and training—theoretical analysis,” Cryogenics 25, 307 (1985).

    Article  Google Scholar 

  18. H. Maeda, M. Urata, H. Ogiwara, S. Miyake, N. Aoki, M. Sugimoto, and J. Tani, “Stabilization for wind and react Nb3 Sn high field insert coil,” Proc. 11th Intnl. Conf. Magnet Tech. (MT-11) (Elsevier Applied Science, London, 1990), 1114.

    Google Scholar 

  19. R.S. Kensely and Y. Iwasa, “Frictional properties of metal insulator surfaces at cryogenic temperatures,” Cryogenics 20, 25 (1980).

    Article  Google Scholar 

  20. R.S. Kensley, H. Maeda, and Y. Iwasa, “Transient slip behavior of metal/insulator pairs at 4.2 K,” Cryogenics 21, 479 (1981).

    Article  Google Scholar 

  21. A. Iwabuchi and T. Honda, “Temperature rise due to frictional sliding of SUS316 vs SUS316L and SUS316 vs polyimide at 4K,” Proc. 11th Intl. Conf. Magnet Tech. (MT11) (Elsevier Applied Science, London, 1990), 686.

    Google Scholar 

  22. P.C. Michael, D. Aized, Y. Iwasa, and E. Rabinowicz, “Mechanical properties and static friction behavior of epoxy mixes at room temperature and at 77 K,” Cryogenics 30, 775 (1990).

    Article  Google Scholar 

  23. P.C. Michael, Y. Iwasa, and E. Rabinowicz, “Reassessment of cryotribology theory,” Wear 174, 163 (1994).

    Article  ADS  Google Scholar 

  24. T. Takao and O. Tsukamoto, “Stability against the frictional motion of conductor in superconducting windings,” IEEE Tran. Magn. 27, 2147 (1991).

    Article  ADS  Google Scholar 

  25. M. Urata and H. Maeda, “Relation between radial stress and quench current for tightly wound dry solenoids,” IEEE Trans. Mag. MAG-23, 1596 (1987).

    Article  ADS  Google Scholar 

  26. P.C. Michael, E.S. Bobrov, Y. Iwasa, and M. Arata, Stabilization of dry-wound high-field NbTi solenoids, IEEE Trans. Appl. Superconduc. 3, 316 (1993).

    Article  Google Scholar 

  27. H. Nomura, K. Takahisa, K. Koyama, and T. Sakai, “Acoustic emission from superconducting magnets,” Cryogenics 17, 471 (1977).

    Article  ADS  Google Scholar 

  28. Curt Schmidt and Gabriel Pasztor, “Superconductors under dynamic mechanical stress,” IEEE Tran. Magn. MAG-13, 116 (1977).

    Article  ADS  Google Scholar 

  29. H. Brechna and P. Turowski, “Training and degradation phenomena in superconducting magnets,” Proc. 6th Intl. Conf. Magnet Tech. (MT-6) (ALFA, Bratislava, Czechoslovakia, 1978), 597.

    Google Scholar 

  30. O. Tsukamoto, J.F. Maguire, E.S. Bobrov, and Y. Iwasa, “Identification of quench origins in a superconductor with acoustic emission and voltage measurements,” Appl. Phys. Lett. 39, 172 (1981).

    Article  ADS  Google Scholar 

  31. O. Tsukamoto, M.F. Steinhoff, and Y. Iwasa, “Acoustic emission triangulation of mechanical disturbances in superconducting magnets,” Proc. 9th Symp. Engr. Problems of Fusion Research (IEEE Pub. No. 81CH 1715-2 NPS, 1981), 309.

    Google Scholar 

  32. O. Tsukamoto and Y. Iwasa, “Sources of acoustic emission in superconducting magnets,” J. Appl. Phys. 54, 997 (1983).

    Article  ADS  Google Scholar 

  33. S. Caspi and W.V. Hassenzahl, “Source, origin and propagation of quenches measured in superconducting dipole magnets,” IEEE Trans. Magn MAG-19, 692 (1983).

    Article  ADS  Google Scholar 

  34. H. Iwasaki, S. Nijishima, and T. Okada, “Application of acoustic emission method to the monitoring system of superconducting magnet,” Proc. 9th Intl. Conf. Magnet Tech. (MT-9) (Swiss Institute for Nuclear Research, Villigen, 1985), 830 (1985).

    Google Scholar 

  35. Y. Iwasa, E.S. Bobrov, O. Tsukamoto, T. Takaghi, and H. Fujita, “Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 3. Fracture-induced premature quenches,” Cryogenics 25, 317 (1985).

    Article  Google Scholar 

  36. K. Yoshida, M. Nishi, H. Tsuji, Y. Hattori, and S. Shimamoto, “Acoustic emission measurement on large coils at JAERI,” Adv. Cryogenic Eng. 31, 277 (1986).

    Google Scholar 

  37. O.O. Ige, A.D. McInturff, and Y. Iwasa, “Acoustic emission monitoring results from a Fermi dipole,” Cryogenics 26, 131 (1986).

    Article  Google Scholar 

  38. H. Maeda, A. Sato, M. Koizumi, M. Urata, S. Murase, I. Takano, N. Aoki, M. Ishihara, E. Suzuki, “Application of acoustic emission technique to a multi-filamentary 15.1 tesla superconducting magnet system,” Adv. Cryogenic Eng. 31, 293 (1986).

    Google Scholar 

  39. J. Chikaba, F. Irie, K. Funaki, M. Takeo, and K. Yamafuji, “Instabilities due to mechanical strain energy in superconducting magnets,” IEEE Tran. Magn. MAG-23, 1600 (1987).

    Article  ADS  Google Scholar 

  40. T. Ogitsu, K. Tsuchiya, and A. Devred, “Investigation of wire motion in superconducting magnets,” IEEE Trans. Magn. 27, 2132 (1991).

    Article  ADS  Google Scholar 

  41. K. Ikizawa, N. Takasu, Y. Murayama, K. Seo, S. Nishijima, K. Katagiri, and T. Okada, “Instability of superconducting racetrack magnets,” ibid., 2128 (1991).

    Google Scholar 

  42. See, for example, P.F. Dahl, G.H. Morgan, and W.B. Sampson, “Loss measurements on twisted multifilamentary superconducting wires,” J. Appl. phys. 40, 2083 (1969).

    Article  ADS  Google Scholar 

  43. See, for example, A. Février, “Latest news about superconducting A.C. machines,” IEEE Trans. Magn. 24, 787 (1988).

    Article  ADS  Google Scholar 

  44. R.B. Goldfarb and M. Takayasu (personal communication, 1989).

    Google Scholar 

  45. H. Tsuji, M. Nishi, K. Yoshida, E. Tada, K. Kawano, K. Koizumi, H. Yamamura, M. Oshikiri, Y. Takahashi, T. Ando, and S. Shimamoto, “Thermal design and verification tests of the Nb-Ti demo poloidal coils (DPC-U1, U2),” IEEE Trans. Magn. MAG-24, 1303 (1988).

    Article  ADS  Google Scholar 

  46. M. Takayasu, C.Y. Gung, M.M. Steves, B. Oliver, D. Reisner and M.O. Hoenig, “Calorimetric measurement of ac loss in Nb3 Sn superconductors,” Proc. 11th Int’l Conf. Magnet Tech. (MT-11) (Elsevier Applied Science, London, 1990), 1033.

    Google Scholar 

  47. J.E.C. Williams M. Baker, E.S. Bobrov, Y. Iwasa, M.J. Leupold, V.J. Stejskal, R. J. Weggel, A. Zhukovsky, C.Y. Gung, J. Miller, T. Painter, S. Van Sciver, “The development of a niobium-titanium cable-in-conduit coil for a 45 T hybrid magnet,” IEEE Trans. Magn. 30, 1633 (1994).

    Article  ADS  Google Scholar 

  48. W.H. Warnes and D.C. Larbalestier, “Determination of the average critical current from measurements of the extended resistive transition,” IEEE Trans. Magn. MAG-23, 1183 (1987).

    Article  ADS  Google Scholar 

  49. J.E.C. Williams, E.S. Bobrov, Y. Iwasa, W.F.B. Punchard, J. Wrenn, A. Zhukovsky, “NMR magnet technology at MIT,” IEEE Trans. Magn. 28, 627 (1992).

    Article  ADS  Google Scholar 

  50. Y. Iwasa and V.Y. Adzovie, “The index number (n) below ‘critical’ current in Nb-Ti superconductors,” (to be published 1995).

    Google Scholar 

  51. H. Fujita, T. Takaghi, and Y. Iwasa, “Experimental and theoretical investigation of mechanical disturbances in epoxy-impregnated superconducting coils. 4. Prequench cracks and frictional motion,” Cryogenics 25, 323 (1985).

    Article  Google Scholar 

  52. Y. Iwasa, “Conductor motion in the superconducting magnet—a review,” Stability of superconductors in helium I and helium II (International Institute of Refrigeration, Paris France, 1981), 125.

    Google Scholar 

  53. J. Fujikami, K. Sato, Y. Iwasa, M. Yunus, H. Lim, and J.B. Kim (preliminary data, FBNML, 1994).

    Google Scholar 

  54. R. Schwall (personal communication, 1994).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

(2002). AC, Splice, and Mechanical Losses. In: Case Studies in Superconducting Magnets. Selected Topics in Superconductivity. Springer, Boston, MA. https://doi.org/10.1007/0-306-47062-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47062-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44881-2

  • Online ISBN: 978-0-306-47062-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics