Skip to main content

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. A. Barrow and B. R. Lentz, Membrane structural domains, Biophys. J 48, 221–234 (1985).

    CAS  PubMed  Google Scholar 

  2. L.A. Sklar, The partition of cis-parinaric acid and trans-parinaric acid among aqueous, fluid lipid, and solid lipid phases, Biochemistry 32, 169–177 (1980).

    CAS  Google Scholar 

  3. B. Hudson and S. A. Cavalier, in: Studies of Membrane Dynamics and Lipid-Protein Interactions with Parinaric Acid in Speclroscopic Membrane Probes Vol. 1 L. Loew, ed.), CRC Press, Inc., Boca Raton, Florida (1988).

    Google Scholar 

  4. T. Parasassi, F. Conti, and E. Gratton, Study of heterogeneous emission of parinaric acid isomers using multifrequency phase fluorometry, Biochemistry 23, 5660–5664 (1984).

    Article  CAS  Google Scholar 

  5. V. B. Yashar, M. Menashe, R. L. Biltonen, M. L. Johnson, and Y. Barenholz, Interaction of trans-parinaric acid with phosphatidylcholine bilayers: Comparison with the effect of other fluorophores, Biochim. Biophys. Acta 904, 117–124 (1987).

    PubMed  Google Scholar 

  6. T. Parassassi, F. Conti, M. Glaser, and E. Gratton, Detection of phospholipid phase separation. A multifrequency phase fluorimetry study of l,6-diphenyl-l,3,5-hexatriene fluorescence, J. Biol. Chem. 259, 14011–14017 (1984).

    Google Scholar 

  7. C. D. Stubbs, K. Kinosita, Jr. F. Munkonge, P. J. Quinn, and A. Ikegami, The dynamics of lipid motion in sarcoplasmic reticulum membranes determined by steady-state and time-resolved fluorescence measurements on l,6-diphenyl-l,3,5-hexatriene and related molecules, Biochim. Biophys. Acta 775, 374–380 (1984).

    CAS  PubMed  Google Scholar 

  8. M. Vincent and J. Gallay, Time-resolved fluorescence anisotropy study of effect of a cis double bond on structure of lecithin and cholesterol-lecithin bilayers using n-(9-anthroyloxy) fatty acids as probes, Biochemistry 23, 6514–6522 (1984).

    CAS  Google Scholar 

  9. M. Straume and B. J. Litman, Equilibrium and dynamic structure of large,unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and l-[4-(trimethylammom’o)phenyl]-6-phenyI-l,3,5-hexatriene anisotropy decay, Biochemistry 26, 5113–5120 (1987).

    CAS  PubMed  Google Scholar 

  10. D. R. James and W. R. Ware, A fallacy in the interpretation of fluorescence decay parameters, Chem. Phys. Lett. 120, 455 (1985).

    CAS  Google Scholar 

  11. D. R. James and W. R. Ware, Recovery of underlying distributions of lifetimes from fluorescence decay data, Chem. Phys. Lett. 126, 7–11 (1986).

    Article  CAS  Google Scholar 

  12. J. R. Alcala, E. Gratton, and G. G. Prendergast, Resolvability of fluorescence lifetime distributions using phase fluorometry, Biophys. J. 51, 587–596 (1987).

    CAS  PubMed  Google Scholar 

  13. J. R. Alcala, E. Gratton, and F. G. Prendergast, Fluorescence lifetime distributions in proteins, Biophys. J. 51, 597–604 (1987).

    CAS  PubMed  Google Scholar 

  14. J. R. Alcala, E. Gratton, and F. G. Prendergast, Interpretation of fluorescence decays in proteins using continuous lifetime distributions, Biophys. J. 51, 925–936 (1987).

    CAS  PubMed  Google Scholar 

  15. J. R. Lakowicz, R. F. Steiner, and I. Gryczynski, The distribution of donor-to-acceptor distances in troponin C from frequency-domain fluorometry, Biophys. J. 49, 106a (1986).

    Google Scholar 

  16. J. R. Lakowicz, M. L. Johnson, W. Wiczk, A. Bhat, and R. F. Steiner, Resolution of a distribution of distances by fluorescence energy transfer and frequency-domain fluorometry, Chem. Phys. Lett. 138, 587–593 (1987).

    Article  CAS  Google Scholar 

  17. B. W. Williams and C. D. Stubbs, Properties influencing fluorophore lifetime distributions in membranes, Biochemistry 27, 7994–7999 (1988).

    CAS  PubMed  Google Scholar 

  18. D. W. Marquardt, An algorithm for least squares estimation of non-linear parameters, J. Soc. Ind. Appt. Math. 11, 431–441 (1963).

    Google Scholar 

  19. S. B. Phillips and R. L. Lyke, Fluorescence kinetics of systems with a quasi-continuum of excited states, Chem. Phys. Lett. 36, 247–251 (1987).

    Google Scholar 

  20. A. K. Livesey and J. C. Brouchon, Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method, Biophys. J. 52, 693–706 (1987).

    CAS  Google Scholar 

  21. J. G. McWhirter and E. R. Pike, On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind, J. Phys. A; Math. Gen. 11, 1729–1745 (1978).

    Article  Google Scholar 

  22. R. Fiorini, M. Valentino, S. Wang, M. Glaser, and E. Gratton, Fluorescence lifetime distributions of l,6-diphenyl-l,3,5-hexatriene in phospholipid vesicles, Biochemistry 26, 3864–3870 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. D. R. James, J. R. Turnbull, B. D. Wagner, W. R. Ware, and N. O. Petersen, Distributions of fluorescence decay times for parinaric acids in phospholipid membranes, Biochemistry 26, 6272–6277 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. T. Parassassi, F. Conti, E. Gratton, and O. Sapora, Membrane modification of differentiating proerythroblasts. Variation of l,6-diphenyl-l,3,5-hexatriene lifetime distributions by multifrequency phase and modulation fluorimetry, Biochim. Biophys. Acta 898, 196–201 (1987).

    Google Scholar 

  25. R. M. Fiorini, M. Valentino, E. Gratton, E. Bertoli, and G. Curatola, Erythrocyte membrane heterogeneity studies using l,6-diphenyl-l,3,5-hexatriene fluorescence lifetime distribution, Biochem. Biophys. Res. Commun. 147, 460–466 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. J. M. Vanderkooi and J. B. Callis, Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes, Biochemistry 13, 4000–4007 (1974).

    CAS  PubMed  Google Scholar 

  27. E. Sackmann, On the application of excimers as optical probes in membrane research, Z. Phys. Chem. 101, 391–416 (1976).

    CAS  Google Scholar 

  28. H.-J. Galla and E. Sackmann, Lateral diffusion in the hydrophobic region of membranes: Use of pyrene excimers as optical probes, Biochim. Biophys. Acta 339, 103–115 (1974).

    CAS  PubMed  Google Scholar 

  29. D. Axelrod, D. E. Koppel, J. Schlessmjer, E. Elson, and W. W. Webb, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16, 1055–1069 (1976).

    CAS  PubMed  Google Scholar 

  30. F. W. J. Teale, Fluorescence depolarization by light scattering in turbid solutions, Photochem. Photobiol. 10, 363–374 (1969).

    CAS  PubMed  Google Scholar 

  31. B. R. Lentz, Light scattering effects in the measurement of membrane microviscosity with DPH, Biophys. J. 25, 489–494 (1979).

    CAS  PubMed  Google Scholar 

  32. C. D. Stubbs, Membrane fluidity: Structure and Dynamics of membrane lipids, Essays in Biochemistry 19, 1–39 (1983).

    CAS  PubMed  Google Scholar 

  33. W. van der Meer, Physical aspects of membrane fluidity, in: Physiology of Membrane Fluidity M. Shinitzky, ed., Vol. 1, pp. 54–71, CRC Press, Boca Raton, Florida (1984).

    Google Scholar 

  34. C. D. Stubbs and A. D. Smith, The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function, Biochim. Biophys. Acta 779, 89–137 (1984).

    CAS  PubMed  Google Scholar 

  35. R. E. Dale, L. A. Chen, and L. Brand, Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles, J. Biol. Chem. 252, 7500–7510 (1977).

    CAS  PubMed  Google Scholar 

  36. L. A. Chen, R. E. Dale, S. Roth, and L. Brand, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosity,” J. Biol. Chem. 252, 2163–2169 (1977).

    CAS  PubMed  Google Scholar 

  37. S. Kawato, K. Kinosita, Jr., and A. Ikegami, Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques, Biochemistry 16, 2319–2324 (1977).

    Article  CAS  PubMed  Google Scholar 

  38. J. R. Lakowicz, H. Cherek, and B. P. Maliwal, Time-resolved fluorescence anisotropies of diphenylhexatriene and perylene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry, Biochemistry 24, 376–383 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. K. Kinosita, Jr. and A. Ikegami, Reevaluation of the wobbling dynamics of diphenylhexatriene in phosphatidylcholine and cholesterol/phosphatidylcholine membranes, Biochim. Biophys. Acta 769, 523–527 (1984).

    CAS  Google Scholar 

  40. C. D. Stubbs, T. Kouyama, K. Kinosita, Jr., and A. Ikegami, Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers, Biochemistry 20, 4257–4262 (1981).

    Article  CAS  PubMed  Google Scholar 

  41. M. Straume and B. J. Litman, Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay, Biochemistry 26, 5121–5126 (1987).

    CAS  PubMed  Google Scholar 

  42. K. Kinosita, Jr., S. Kawato, A. Ikegami, S. Yoshida, and Y. Orii, The effect of cytochrome oxidase on lipid chain dynamics, Biochim. Biophys. Acta 647, 7–17 (1981).

    CAS  PubMed  Google Scholar 

  43. K.. Kinosita, Jr. and A. Ikegami, On the wobbling-in-cone analysis of fluorescence anisotropy decay, Biophys. J. 37, 461–464 (1982).

    CAS  PubMed  Google Scholar 

  44. K. Kinosita, Jr., S. Kawato, and A. Ikegami, Dynamic structure of biological and model membranes: Analysis by optical anisotropy decay measurement, Adv. Biophys. 17, 147–203 (1984).

    PubMed  Google Scholar 

  45. F. Jahnig, Structural order of lipids and proteins in membranes: Evaluation of fluorescence anisotropy data, Proc. Natl. Acad. Sci. U.S.A. 76, 6361–6365 (1979).

    CAS  PubMed  Google Scholar 

  46. M. P. Heyn, Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments, FEBS Lett. 108, 359–364 (1979).

    Article  CAS  PubMed  Google Scholar 

  47. L. W. Engel and F. G. Prendergast, Values for and significance of order parameters and “cone angles” of fluorophore rotation in lipid bilayers, Biochemistry 20, 7338–7345 (1981).

    Article  CAS  PubMed  Google Scholar 

  48. F. Hare, Simplified derivation of angular order and dynamics of rodlike fluorophores in models and membranes, Biophys. J. 42, 205–218 (1983).

    CAS  PubMed  Google Scholar 

  49. H. Pottel, W. van der Meer, and W. Herreman, Correlation between the order parameter and the steady-state fluorescence anisotropy of l,6-diphenyl-l,3,5-hexatriene and an evaluation of membrane fluidity, Biochim. Biophys. Acta 730, 181–186 (1983).

    CAS  Google Scholar 

  50. W. van der Meer, R. B. van Hoeven, and W. J. van Blitterswijk, Steady-state fluorescence polarization data in membranes. Resolution into physical parameters by an extended Perrin equation for restricted rotation of fluorophores, Biochim. Biophys. Acta 854, 38–44 (1986).

    PubMed  Google Scholar 

  51. W. van der Meer, H. Pottel, W. Herreman, M. Amclott, H. Hendrickx, and H. Schroder, Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions, Biophys. J. 46, 515–523 (1984).

    PubMed  Google Scholar 

  52. M. Amelott, H. Hendrickx, W. Herreman, H. Pottel, F. Van Cauwelaert, and W. van der Meer, Effect of orientational order on the decay of the fluorescence anisotropy in membrane suspensions, Biophys. J. 46, 525–539 (1984).

    Google Scholar 

  53. J. M. Martin, van De Ven, and Y. K. Levine, Angle-resolved fluorescence depolarization of macroscopically ordered bilayers of unsaturated lipids, Biochim. Biophys. Acta 777, 283–296 (1984).

    Google Scholar 

  54. F. Mulders, H. van Langen, G. van Ginkel, and Y. K. Levine, The static and dynamic behaviour of fluorescent probe molecules in lipid bilayers, Biochim. Biophys. Acta 859, 209–218 (1986).

    CAS  Google Scholar 

  55. M. G. Badea and L. Brand, Time-resolved fluorescence measurements, Methods Enzymol. 61, 378–425 (1979).

    CAS  PubMed  Google Scholar 

  56. D. V. O’Connor and D. Phillips, Time Correlated Single Photon Counting, Academic Press London (1984).

    Google Scholar 

  57. E. Gratton and M. Limkeman, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44, 315–324 (1983).

    CAS  PubMed  Google Scholar 

  58. J. R. Lakowicz and B. P. Maliwal, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21, 61–78 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. J. R. Lakowicz, Fluorescence studies of structural fluctuations in macromolecules as observed by the time, lifetime and frequency domains, Methods Enzymol. 131, 518–567 (1986).

    CAS  PubMed  Google Scholar 

  60. R. D. Ludescher, L. Peting, S. Hudson, and B. Hudson, Time-resolvedfluorescence anisotropy for systems with lifetime and dynamic heterogeneity, Biophys. Chem. 28, 59–75 (1987).

    Article  CAS  PubMed  Google Scholar 

  61. L. Davenport, J. R. Knutson, and L. Brand, Anisotropy decay associatedfluorescence spectra and analysis of rotational heterogeneity. 2. l,6-Diphenyl-l,3,5-hexatriene in lipid bilayers, Biochemistry 25, 1811–1816 (1986).

    CAS  PubMed  Google Scholar 

  62. H. Szmacinski, R. Jayaweera, H. Cherek, and J. R. Lakowicz, Demonstration of an associated anisotropy decay by frequency-domain fluorometry, Biophys. Chem. 27, 233–241 (1987).

    Article  CAS  PubMed  Google Scholar 

  63. J. R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M. L. Johnson, Enhanced resolution of fluorescence anisotropy decays by simultaneous analysis of progressively quenched samples, Biophys. J. 51, 755–768 (1987).

    CAS  PubMed  Google Scholar 

  64. C. D. Stubbs, W. M. Tsang, J. Belin, A. D. Smith, and S. M. Johnson, Incubation of exogenous fatty acids with lymphocytes. Changes in fatty acid composition and effects on the rotational relaxation time of l,6-diphenyl-l,3,5-hexatriene, Biochemistry 19, 2756–2762 (1980).

    Article  CAS  PubMed  Google Scholar 

  65. J.-G. Kuhry, G. Kuportail, C. Bronner, and G. Laustriat, Plasmamembrane fluidity measurements on whole living cells by fluorescenceanisotropy of trimethylammonium diphenylhexatriene, Biochim. Biophys. Acta 845, 60–67 (1985).

    CAS  PubMed  Google Scholar 

  66. C. Zannoni, A. Arcioni, and P. Cavatorta, Fluorescence depolarization in liquid crystals and membrane bilayers, Chem. Phys. Lipids 32, 179–250 (1983).

    CAS  Google Scholar 

  67. W. E. Harris and W. L. Stahl, Incorporation of cis-parinaric acid, a fluorescent fatty acid, into synaptosomal phospholipids by an acyl-CoA acyltransferase, Biochim. Biophys. Acta 736, 79–91 (1983).

    CAS  PubMed  Google Scholar 

  68. M. Cranney, R. B. Cundall, G. R. Jones, J. T. Richards, and E. W. Thomas, Fluorescence lifetime and quenching studies on some interesting diphenythexatriene membrane probes, Biochim. Biophys. Acta 735, 418–425 (1983).

    CAS  Google Scholar 

  69. F. G. Prendergast, R. P. Haugland, and P. J. Callahan, l-[4-(Trimethylamino)phenyl]-6-phenylhexa-l,3,5-triene: synthesis, fluorescence properties, and use as a fluorescence probe of lipid bilayers, Biochemistry 20, 7333–7338 (1983).

    Google Scholar 

  70. M. Shinitsky and Y. Barenholtz, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515, 367–394 1976)

    Google Scholar 

  71. R. E. Dale, Membrane structure and dynamics by fluorescence probe depolarization kinetics, in: Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology R. B. Cundall and R. E. Dale, eds.), pp. 555–612, Plenum, New York (1984).

    Google Scholar 

  72. R. A. Parente and B. R. Lentz, Advantages and limitations of l-palmitoyl-l-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl ]ethyl ]carbonyl ]-3-sn-phosphatidylcholine as a fluorescent membrane probe, Biochemistry 24, 6178–6185 (1985).

    CAS  PubMed  Google Scholar 

  73. K. R. Thulborn, L. M. Tilley, W. H. Sawyer, and E. Treloar, The use of n-(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers, Biochim. Biophys. Acta 558, 166–178 (1979).

    CAS  PubMed  Google Scholar 

  74. D. Schachter, U. Cogan, and R. E. Abbot, Asymmetry of lipid dynamics in human erythrocyte membranes studied by permeant fluorophores, Biochemistry 21, 2146–2150 (1982).

    Article  CAS  PubMed  Google Scholar 

  75. M. Vincent, B. de Foresta, J. Gallay, and A. Alfsen, Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents, Biochemistry 21, 708–716 (1982).

    Article  CAS  PubMed  Google Scholar 

  76. M. Vincent, J. Gallay, J. de Bony, and J.-F. Tocanne, Steady-state and time-resolved fluorescence anisotropy study of phospholipid molecular motion in the gel phase using l-palmitoyl-2-[9-(2-anthryl)-nonanoyl]-sn-glycero-3-phosphocholine as probe, Eur, J. Biochem. 250, 341–347 (1985).

    Google Scholar 

  77. R. E. Pagano and R. G. Sleight, Defining rapid transport in animal cells, Science 229, 1051–1057 (1985).

    CAS  PubMed  Google Scholar 

  78. A. Chattopadhyay and E. London, Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids, Biochemistry 26, 39–45 (1987).

    Article  CAS  PubMed  Google Scholar 

  79. A. Chattopadhyay and E. London, Spectroscopic and ionization properties of N-(7-nitro-2, l, 3-benzoxadiazol-4-yl)-labeled lipids in model membranes, Biochim.Biophys.Acta 938, 24–34 (1988).

    CAS  PubMed  Google Scholar 

  80. C. D. Stubbs, B. W. Williams, C. L. Pryor, and E. Rubin, Ethanol-induced modifications to membrane lipid structure-Effect on phospholipase A 2 -membrane interactions, Arch.Biochem. 262, 560–573 (1988).

    CAS  PubMed  Google Scholar 

  81. B. K.-K. Fung and L. Stryer, Surface density determination in membranes by fluorescence energy transfer, Biochemistry 17, 5241–5248 (1978).

    CAS  PubMed  Google Scholar 

  82. L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annu. Rev. Biochem. 47, 819–846 (1978).

    Article  CAS  PubMed  Google Scholar 

  83. T. Le Doan, M. Takasugi, I. Aragon, G. Boudet, T. Montenay-Garestier, and C. Helene, Excitation energy transfer from tryptophan residues of peptides and intrinsic proteins to diphenylhexatriene in phospholipid vesicles and biological membranes, Biochim. Biophys. Acta 735, 259–270 (1983).

    PubMed  Google Scholar 

  84. P. K. Wolber and B. S. Hudson, An analytic solution to the Forster energy transfer problem in two dimensions, Biophys. J. 28, 197–210 (1979).

    CAS  PubMed  Google Scholar 

  85. L. Davenport, R. E. Dale, R. H. Bisby, and R. B. Cundall, Transverse location of the fluorescentprobe l,6-diphenyl-l,3,5-hexatriene in model lipid bilayer membrane systems by resonance excitation energy transfer, Biochemistry 24, 4097–4108 (1985).

    Article  CAS  PubMed  Google Scholar 

  86. R. E. Dale, The orientational freedom of molecular probes, Biophys. J. 26, 161–194 (1979).

    CAS  PubMed  Google Scholar 

  87. M. Rehorek, N. A. Dencher, and M. P. Heyn, Fluorescenceenergy transfer from diphenylhexatriene to bacteriorhodopsin in lipid vesicles, Biophys. J. 43, 39–45 (1983).

    CAS  PubMed  Google Scholar 

  88. P. J. Fleming, D. E. Koppel, A. L. Y. Lau, and P. Strittmatter, Intramembrane position of the fluorescent tryptophanyl residue in membrane-bound cytochrome Biochemistry 18, 5458–5464 (1979).

    Article  CAS  PubMed  Google Scholar 

  89. D. E. Koppel, P. J. Fleming, and P. Strittmatter, Intramembrane positions of membrane-bound chromophores determined by excitation energy transfer, Biochemistry 18, 5450–5457 (1979).

    Article  CAS  PubMed  Google Scholar 

  90. E. Friere, T. Markello, C. Rigell, and P. W. Holloway, Calorimetric and fluorescence characterization of interactions between cytochrome b5 and phosphatidylcholine bilayers, Biochemistry 22, 1675–1680 (1983).

    Google Scholar 

  91. A. M. Kleinfeld and M. F. Lukacovic, Energy-transfer study of cytochrome b5 using the anthroyloxy fatty acid membrane probes, Biochemistry 24, 1883–1890 (1985).

    CAS  PubMed  Google Scholar 

  92. A. M. Kleinfeld, Tryptophan imaging of membrane proteins, Biochemistry 24, 1874–1882 (1985).

    CAS  PubMed  Google Scholar 

  93. T. Kometani, K. Kinosita, Jr., T. Furuno, T. Kouyama, and A. Ikegami, Transmembrane location of retinal in purple membrane, Biophys. J. 52, 509–517 (1987).

    CAS  Google Scholar 

  94. B. A. Baird, U. Pick, and G. G. Hammes, Structural investigation of reconstituted chloroplast ATPase with fluorescence measurements, J. Biol. Chem. 254, 3818–3825 (1979).

    CAS  PubMed  Google Scholar 

  95. N. Shaklai, J. Yguerabide, and H. M. Ranney, Interaction of hemoglob in with red blood cell membranes as shown by a fluorescent chromophore, Biochemistry 16, 5585–5592 (1977).

    CAS  PubMed  Google Scholar 

  96. E. A. Griffin, J. M. Vanderkooi, G. Maniara, and M. Erecinska, Anthracycline binding to synthetic and natural membranes. A study using resonance energy transfer, Biochemistry 25, 7875–7880 (1986).

    Article  CAS  PubMed  Google Scholar 

  97. J. M. Vanderkooi, A. Ierokomas, H. Nakamura, and A. Martonosi, Fluorescence energy transfer between Ca2+ transport ATPase molecule in artifical membranes, Biochemistry 16, 1262–1267 (1977).

    Article  CAS  PubMed  Google Scholar 

  98. C. A. Hasselbacher, T. L. Street, and T. G. Dewey, Resonance enery transfer as a monitor of membrane prote in domain segregation: Application to the aggregation of bacterior-hodopsin reconstituted into phospholipid vesicles, Biochemistry 23, 6445–6452 (1984).

    Article  CAS  Google Scholar 

  99. T. G. Dewey and O. G. Hammes, Calculation of fluorescence resonance energy transfer on surfaces, Biophys. J. 32, 1023–1036 (1980).

    CAS  PubMed  Google Scholar 

  100. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum, New York (1983).

    Google Scholar 

  101. E. Blatt and W. H. Sawyer, Depth-dependent fluorescent quenching in micelles and membranes, Biochim. Biophys. Acta 822, 43–62 (1985).

    CAS  PubMed  Google Scholar 

  102. J. R. Lakowicz, D. Hogen, and G. Omann, Diffusion and partitioning of a pesticide, lindane, into phosphatidylcholine bilayers, Biochim. Biophys. Acta 471, 401–411 (1977).

    CAS  PubMed  Google Scholar 

  103. O. T. Jones and A. G. Lee, Interactions of hexachlorocyclohexanes with lipid bilayers, Biochim. Biophys. Acta 812, 731–739 (1985).

    CAS  Google Scholar 

  104. V. Nie, C. D. Stubbs, B. W. Williams, and E. Rubin, Ethanol causes decreased partitioning into biological membranes without changes in lipid order, Arch. Biochem. Biophys. 268, 349–359 (1989).

    Article  CAS  PubMed  Google Scholar 

  105. O. T. Jones, R. J. Froud, and A. G. Lee, Interactions of hexachlorocyclohexanes with the (Ca2+ + Mg2)-ATPase from sarcoplasmic reticulum, Biochim. Biophys. Acta 812, 740–751 (1985).

    CAS  PubMed  Google Scholar 

  106. G. M. Omann and M. Glaser, Biosynthetic incorporation of fluorescent carbazolylun-decanoic acid into membrane phospholipids of LM cells and determination of quenching constants and partition coefficients of hydrophobic quenchers, Biochemistry 23, 4962–4969 (1984).

    Article  CAS  PubMed  Google Scholar 

  107. R. Fato, M. Battino, G. P. Castelli, and G. Lenaz, Measurement of the lateral diffusion coefficients of ubiquinones in lipid vesicles by fluorescence quenching of 12-(9-anthroyl) stearate, FEBS Lett. 179, 238–242 (1985).

    Article  CAS  PubMed  Google Scholar 

  108. K. A. Sikaris, K. R. Thulborn, and W. H. Sawyer, Resolution of partition coefficients in the transverse plane of the lipid bilayer, Chem. Phys. Lipids 29, 23–36 (1981).

    CAS  Google Scholar 

  109. E. Blatt, R. C. Chatelier, and W. H. Sawyer, Effects of quenching mechanism and type of quencher association on Stern-Volmer plots in compartmentalized systems, Biophys. J. 50, 349–356 (1986).

    CAS  Google Scholar 

  110. E. London, Investigation of membrane structure using fluorescence quenching by spinlabels, Mol. Cell. Biochem. 45, 181–188 (1982).

    Article  CAS  PubMed  Google Scholar 

  111. A. C. Simmonds, J. M. East, O. T. Jones, E. K, Ronney, J. McWhirter, and A. G. Lee, Annular and non-annular binding sites on the (Ca2+ + Mg2+)-ATase Biochim. Biophys.Acta 693, 398–406 (1982).

    CAS  PubMed  Google Scholar 

  112. E. London and G. W. Feigenson, Fluorescence quenching in model membranes. 1. Characterization of quenching caused by a spin-labeled phospholipid, Biochemistry 20, 1932–1938 (1981).

    CAS  PubMed  Google Scholar 

  113. E. London and G. W. Feigenson, Fluorescence quenching in model membranes. 2. Determination of the local lipid environment of the calcium adenosinetriphosphatase from sarcoplasmic reticulum, Biochemistry 20, 1939–1948 (1981).

    CAS  PubMed  Google Scholar 

  114. M. Caffrey and G. W. Feigenson, Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics, Biochemistry 20, 1949–1961 (1981).

    Article  CAS  PubMed  Google Scholar 

  115. J. M. East and A. G. Lee, Lipid selectivity of the calcium and magnesium ion dependent adenosinetriphosphatase, studied with fluorescence quenching by a brominated phospholipid, Biochemistry 21, 4144–4151 (1982).

    Article  CAS  PubMed  Google Scholar 

  116. E. K. Rooney, M. G. Gore, and A. G. Lee, Two classes of binding site for hydrophobic molecules on bacterioopsin, Biochemistry 26, 3688–3697 (1987).

    Article  CAS  Google Scholar 

  117. R. Fato, M. Battino, M. D. Esposti, G. P. Castelli, and G. Lenaz, Determination of partition and lateral diffusion coefficients of ubiquinones by fluorescencequenching of n-(9-anthroyloxy)stearic acids in phospholipid vesicles and mitochondrial membranes, Biochemistry 25, 3378–3390 (1986).

    Article  CAS  PubMed  Google Scholar 

  118. M. F. Blackwell, K. Gounaris, S. J. Zara, and J. Barber, A method for estimating lateral diffusion coefficients in membranes from steady-state fluorescence quenching studies, Biophys. J. 51, 735–744 (1987).

    CAS  PubMed  Google Scholar 

  119. P. L.-G. Chong and T. E. Thompson, Oxygen quenching of pyrene-lipid fluorescence in phosphatidylcholine vesicles, Biophys. J. 47, 613–621 (1985).

    CAS  PubMed  Google Scholar 

  120. E. A. Haigh, K. R. Thulborn, and W. H. Sawyer, Comparison of fluorescence energy transfer and quenching methods to establish the position and orientation of components within the transverse plane of the lipid bilayer. Application to the gramicidin A-bilayer interaction, Biochemistry 18, 3525–3532 (1979).

    Article  CAS  PubMed  Google Scholar 

  121. T. Markello, A. Zlotnick, J. Everett, J. Tennyson, and P. W. Holloway, Determination of the topography of cytochrome b5 in lipid vesicles by fluorescence quenching, Biochemistry 24, 2895–2901 (1985).

    Article  CAS  PubMed  Google Scholar 

  122. D. Chalpin and A. M. Kleinfeld, Interaction of fluorescence quenchers with the n-(9-anthroyloxy) fatty acid membrane probes, Biochim. Biophys. Acta 731, 465–474 (1983).

    CAS  Google Scholar 

  123. N. G. Bakhshiev and I. V. Piterskaya, Universal molecular interactions and their effect on the electronic spectra of molecules in two-component solutions, Opt. Spectrosk. 19, 390–395 (1965).

    Google Scholar 

  124. J. H. Easter, R. P. DeToma, and L. Brand, Nanosecond time-resolved emission spectroscopy of a fluorescence probe adsorbed to l-α-egg lecithin vesicles, Biophys. J. 16, 571–583 (1976).

    CAS  PubMed  Google Scholar 

  125. M. G. Badea, R. P. DeToma, and L. Brand, Nanosecond relaxation processes in liposomes, Biophys. J. 43, 197–209 (1978).

    Google Scholar 

  126. S. R. Meech, D. V. O’Connor, A. J. Roberts, and D. Phillips, On the construction of nanosecond time-resolved emission spectra, Phochem. Photobiol. 33, 159–172 (1980).

    Google Scholar 

  127. R. P. DeToma, Solvent relaxation, in: Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology R. B. Cundall and R. E. Dale, eds.), pp. 393–410, Plenum, New York (1984).

    Google Scholar 

  128. C. D. Stubbs, S. R. Meech, A. G. Lee, and D. Phillips, Solvent relaxation in lipid bilayers with dansyl probes, Biochim. Biophys. Acta 815, 351–360 (1985).

    CAS  PubMed  Google Scholar 

  129. J. R. Lakowicz and A. Baiter, Analysis of excited-state processes by phase-modulation fluorescence spectroscopy, Biophys. Chem. 16, 117–132 (1982).

    CAS  PubMed  Google Scholar 

  130. J. R. Lakowicz, R. B. Thompson, and H. Cherek, Phase fluorometric studies of spectral relaxation at the lipid-water interface of phospholipid vesicles, Biochim. Biophys. Acta 734, 295–308 (1983).

    CAS  Google Scholar 

  131. J. R. Lakowicz, D. R. Bevan, B. P. Maliwal, H. Cherek, and A. Baiter, Synthesis and characterization of a fluorescence probe of the phase transition and dynamic properties of membranes, Biochemistry 22, 5714–5722 (1983).

    CAS  Google Scholar 

  132. J. R. Lakowicz and S. Keating-Nakamoto, Red-edge excitation of fluorescence and dynamic properties of proteins and membranes, Biochemistry 23, 3013–3021 (1984).

    Article  CAS  PubMed  Google Scholar 

  133. A. Gafni, R. P. DeToma, R. E. Manrow, and L. Brand, Nanosecond decay studies of a fluorescence probe bound to apomyoglobin, Biophys. J. 17, 155–168 (1977).

    CAS  PubMed  Google Scholar 

  134. A. P. Demchenko and N. V. Shcherbatska, Nanosecond dynamics of charged fluorescent probes at the polar interface of a membrane phospholipid bilayer, Biophys. Chem. 22, 131–143 (1985).

    Article  CAS  PubMed  Google Scholar 

  135. J. R. Lakowicz and D. Hogen, Dynamic properties of the lipid-water interface of model membranes as revealed by lifetime-resolved fluorescence emission spectra, Biochemistry 20, 1366–1373 (1981).

    CAS  PubMed  Google Scholar 

  136. K. P. Ghiggino, A. G. Lee, S. R. Meech, D. V. O’Connor, and D. Phillips, Time-resolved emission spectroscopy of the dansyl fluorescence probe, Biochemistry 20, 5381–5389 (1981).

    Article  CAS  PubMed  Google Scholar 

  137. L. Wojtczak and M. J. Natecz, The surface potential of membranes: Its effect on membrane-bound enzymes and transport processes, in: Structure and Properties of Cell Membranes G. Benga ed.), Vol. II, pp. 215–242, CRC Press, Boca Raton, Florida (1985).

    Google Scholar 

  138. S. Itoh and M. Nishimura, Rate of redox reactions related to surface potential and other surface-related parameters in biological membranes, Methods Enzymol. 125, 58–86 (1986).

    CAS  PubMed  Google Scholar 

  139. B. Ehrenberg, Spectroscopic methods for the determination of membrane surface charge density, Methods Enzymol. 127, 678–696 (1986).

    CAS  PubMed  Google Scholar 

  140. S. McLaughlin, Electrostatic potentials at membrane-solution interfaces, Curr. Top. Membr. Transp. 9, 71–144 (1977).

    CAS  Google Scholar 

  141. J. Barber, Membrane surface charges and potentials in relation to photosynthesis, Biochim. Biophys. Acta 594, 253–308 (1980).

    CAS  PubMed  Google Scholar 

  142. N. Kamo and Y. Kobatake, Changes of surface and membrane potentials in biomembranes, Methods Enzymol. 125, 46–58 (1986).

    CAS  PubMed  Google Scholar 

  143. M. Eisenberg, T. Gresalfi, T. Riccio, and S. McLaughlin, Adsorption of monovalent cations to bilayer membranes containing negative phospholipids, Biochemistry 18, 5213–5223 (1979).

    Article  CAS  PubMed  Google Scholar 

  144. C. J. Drummond and F. Grieser, Absorption spectra and acid-base dissociation of the 4-alkyl derivatives of 7-hydtoxycoumar in in self-assembled surfactant solution: Comments on their use as electrostatic surface potential probes, Photochem. Photobiol. 45, 19–34 (1987).

    CAS  Google Scholar 

  145. R. Gibrat, C. Romieu, and C. Grignon, A procedure for estimating the surface potential of charged or neutral membranes with 8-anilino-l-naphthalenesulphonate probe, Biochim. Biophys. Acta 736, 196–202 (1983).

    CAS  PubMed  Google Scholar 

  146. D. E. Robertson and H. Rottenberg, Membrane potential and surface potential in mitochondria, J. Biol. Chem. 258, 11039–11048 (1983).

    CAS  PubMed  Google Scholar 

  147. H. Tanabe, N. Kamo, and Y. Kobatake, Fluorometric estimation of surface potential change associated with chemotactic stimulation in Tetrahymena pyriformis, Biochim. Biophys. Acta 805, 345–353 (1984).

    CAS  Google Scholar 

  148. A. P. Winiski, A. C. McLaughlin, R. V. McDaniel, M. Eisenberg, and S. McLaughlin, An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers, Biochemistry 25, 8206–8214 (1986).

    Article  CAS  PubMed  Google Scholar 

  149. K. Masamoto, K. Matsuura, S. Itoh, and M. Nishimura, Surface potential dependence of the distribution of charged dye molecules onto photosynthetic membranes, J. Biochem. 89, 397–405 (1981).

    CAS  PubMed  Google Scholar 

  150. T. Aiuchi, H. Tanabe, K. Kurihara, and Y. Kobatake, Fluorescence changes of rhodamine 6G associated with chemotactic responses in Tetrahymena pyriformis, Biochim. Biophys. Acta 628, 355–364 (1980).

    CAS  Google Scholar 

  151. W. S. Chow and J. Barber, Salt dependent changes of 9-aminoacridine as a measure of charge-densities of membrane surfaces, J. Biochem. Biophys. Methods 3, 173–185 (1980).

    Article  CAS  PubMed  Google Scholar 

  152. W. S. Chow and J. Barber, 9-Aminoacridine fluorescence changes as a measure of surface charge density of the thylakoid membrane, Biochim. Biophys. Acta 589, 346–352 (1980).

    CAS  PubMed  Google Scholar 

  153. G. F. W. Searle, J. Barber, and J. D. Mills, 9-Amino-acridine as a probe of the electrical double layer associated with the chloroplast thylakoid membranes, Biochim. Biophys. Acta 461, 413–425 (1977).

    CAS  PubMed  Google Scholar 

  154. I. M. Moller, T. Lundborg, and A. Berczi, The negative surface charge density of plasmalemma vesicles from wheat and oat roots, FEBS Lett. 167, 181–185 (1984).

    CAS  Google Scholar 

  155. A. P. R. Theuvenet, W. H. H. Van De Wijngaard, J. W. van De Pijke, and G. W. F. H. Borst-Pauwels, Application of 9-aminoacridine s probe of the surface potential. Biochim. Biophys. Acta 775, 161–168 (1984).

    CAS  Google Scholar 

  156. J. Cerbon, C. Ontiveros, and A. Janovitz, Phosphoinositides provide a regulatory mechanism of surface charge and active transport, Biochim. Biophys. Acta 887, 275–282 (1986).

    CAS  PubMed  Google Scholar 

  157. R. Kramer, Interaction of membrane surface charges with the reconstituted ADP/ATP-carrier from mitochondria, Biochim. Biophys. Acta 735, 145–159 (1983).

    CAS  PubMed  Google Scholar 

  158. M. S. Fernandez, Determination of surface potential in liposomes, Biochim. Biophys. Acta 646, 23–26 (1981).

    CAS  PubMed  Google Scholar 

  159. S. Lukac, Surface potential at surfactant and phospholipid vesicles as determined by amphiphilic pH indicators, J. Phys. Chem. 89, 5045–5050 (1984).

    Google Scholar 

  160. R. Pal, W. A. Petri, Jr., Y. Barenholz, and R. R. Wagner, Lipid and protein contributions to the membrane surface potential of vesicular stomatitits virus probed by a fluorescent pH indicator, 4-heptadecyl-7-hydroxycoumarin, Biochim. Biophys. Acta 729, 185–192 (1983).

    CAS  PubMed  Google Scholar 

  161. W. L. C. Vaz, A. Nicksch, and F. Jahnig, Electrostatic interactions at charged lipid membranes, Eur. J. Biochem. 83, 299–305 (1978).

    Article  CAS  PubMed  Google Scholar 

  162. R. Homan and M. Eisenberg, A fluorescence quenching technique for the measurement of paramagnetic ion concentrations at the membrane/water interface. Intrinsic and X537A-mediated cobalt fluxes across lipid bilayer membranes, Biochim. Biophys. Acta 812, 485–492 (1985).

    CAS  PubMed  Google Scholar 

  163. S. J. Morris, D. Bradley, and R. Blumenthal, The use of cobalt ions as a collisionsl quencher to probe surface charge and stability of fluorescently labeled bilayer vesicles, Biochim. Biophys. Acta 818, 365–372 (1985).

    CAS  PubMed  Google Scholar 

  164. E. Haas and I. Z. Steinberg, ntramolecular dynamics of chain molecules monitored by fluctuations in efficiency of excitation energy transfer, Biophys. J. 46, 429–437 (1984).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Stubbs, C.D., Williams, B.W. (2002). Fluorescence in Membranes. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47059-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47059-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43954-4

  • Online ISBN: 978-0-306-47059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics