Skip to main content

Tryptophan Phosphorescence from Proteins at Room Temperature

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 3))

Conclusions

Phosphorescence is readily detectable from most types of proteins at room temperature. Tryptophan phosphorescence lifetimes and yields are very sensitive to environment, and therefore phosphorescence is sensitive to conformational changes in proteins. Fundamental questions concerning exactly what parameters affect lifetime and spectra of tryptophan in proteins remain still to be answered.

The long lifetime of phosphorescence allows it to be used for processes which are slow-on the millisecond to microsecond time scale. Among these processes are the turnover time of enzymes and diffusion of large aggregates or smaller proteins in a restricted environment, such as, for example, proteins in membranes. Phosphorescence anisotropy is one method to study these processes, giving information on rotational diffusion. Quenching by external molecules is another potentially powerful method; in this case it can lead to information on tryptophan location and the structural dynamics of the protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Debye and J. O. Edwards, A note on the phosphorescence of proteins, Science 116, 143–144 (1952).

    CAS  Google Scholar 

  2. W. F. J. Teale and G. Weber, Ultraviolet fluorescence of the aromatic amino acids, Biochem. J. 65, 476–482 (1957).

    CAS  PubMed  Google Scholar 

  3. D. Duggan and S. Udenfriend, The spectrophotofluorometric determination of tryptophan in plasma and of tryptophan and tyrosine in protein hydrolysates, J. Biol. Chem. 223, 313–319 (1956).

    CAS  PubMed  Google Scholar 

  4. V. G. Shore and A. B. Pardee, Fluorescence of some proteins, nucleic acids and related compounds, Arch. Biochem. Biophys. 60, 100–107 (1956).

    Article  CAS  PubMed  Google Scholar 

  5. S. V. Konev, Fluorescence and Phosphorescence of Proteins and Nucleic Acids, Plenum Press, New York (1967).

    Google Scholar 

  6. J. B. Beccari, De quam plurinis phosphoris nune prinun detectis, Commen. Acad. Bonon. 2, 136–179 (1746).

    Google Scholar 

  7. E. N. Harvey, A History of Luminescence, pp. 305–365, The American Philosophical Society, Philadelphia (1957).

    Google Scholar 

  8. J. W. Hastings and Q. H. Gibson, The role of oxygen in the photoexcited luminescence of bacterial luciferase, J. Biol. Chem. 242, 720–726 (1967).

    CAS  PubMed  Google Scholar 

  9. M. L. Saviotti and W. C. Galley, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc. Natl. Acad. Sci. U.S.A. 71, 4154–4158 (1974).

    CAS  PubMed  Google Scholar 

  10. J. M. Vanderkooi, D. B. Calhoun, and S. W. Englander, On the prevalence of room temperature protein phosphorescence, Science 236, 568–569 (1987).

    CAS  PubMed  Google Scholar 

  11. J. W. Longworth, in: Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology R. B. Cundall and R. E. Dale, eds.), pp. 651–725, Plenum Press, New York (1983).

    Google Scholar 

  12. J. W. Longworth, in: Excited States of Proteins and Nucleic Acids R. F. Steiner and G. Weinryb, eds.), pp. 319–484, Plenum Press, New York (1971).

    Google Scholar 

  13. T. Hone and J. M. Vanderkooi, Use of phosphorescence at room temperature for the study of biological molecules, Life Sci. Rep. 2, 141–178 (1983).

    Google Scholar 

  14. C. C. C. Vidigal, A. Faljoni-Alario, N. Duran, K. Zinner, Y. Shimizu, and G. Cilento, Electronically excited species in the peroxidase catalyzed oxidation of indoleacetic acid. Effect upon DNA and RNA, Photochem. Photobiol. 30, 195–198 (1979).

    CAS  Google Scholar 

  15. S. K. Lower and M. A. El-Sayed, The triplet state and molecular electronic processes in organic molecules, Chem. Rev. 66, 199–241 (1966).

    Article  CAS  Google Scholar 

  16. S. P. McGlynn, T. Azumi, and M. Konoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey (1969).

    Google Scholar 

  17. J. B. Birks, Photophysics of Aromatic Molecules, Wily-Interscience, New York (1970).

    Google Scholar 

  18. S. S. Lehrer, Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion, Biochemistry 10, 3254–3263 (1971).

    CAS  PubMed  Google Scholar 

  19. R. F. Steiner, Varying luminescence behavior of the different tryptophan residues of papain, Biochemistry 10, 771–778 (1971).

    CAS  PubMed  Google Scholar 

  20. F. Bishai, E. Kuntz, and L. Augenstein, Intra-and intermolecular factors affecting the excited states of aromatic amino acids, Biochim. Biophys. Acta 140, 381–394 (1967).

    CAS  PubMed  Google Scholar 

  21. J. W. Longworth, C. L. McLaughlin, and A. Solomon, Luminescence studies on Bence-Jones proteins and light chains of immunoglobulins and their subunits, Biochemistry 14, 2953–2959 (1976).

    Google Scholar 

  22. J. Domanus, G. B. Strambini, and W. Galley, Heterogeneity in the thermally-induced quenching of the phosphorescence of multi-tryptophan proteins, Photochem. Photobiol. 34, 15–21 (1980).

    Google Scholar 

  23. L. I. Grossweiner, Metastable states of photoexcited ovalbumin and constituents, J. Chem. Phys. 24, 1255–1256 (1956).

    Article  CAS  Google Scholar 

  24. B. Hicks, M. White, C. A. Ghiron, R. R. Kuntz, and W. A. Volker, Flash photolysis of human serum albumin: Characterization of the indole triplet absorption spectrum and decay at ambient temperature, Proc. Natl. Acad. Sci. U.S.A. 75, 1172–1175 (1978).

    CAS  PubMed  Google Scholar 

  25. P. B. Garland, Phase and modulation optical spectroscopic methods for determining triplet lifetimes and slow rotational diffusion coefficients, Biochem. Soc. Trans. 15, 838–839 (1986).

    Google Scholar 

  26. V. P. Bobrovich and S. V. Konov, Luminescence characteristics of amylase in the crystalline state, Dokl. Akad. Nauk SSSR 155, 197–200 (1964).

    CAS  PubMed  Google Scholar 

  27. E. A. Burstein, V. A. Permyakov, S. A. Yashin, S. A. Burkhanov, and A. Finazzi Agro, The fine structure of luminescence spectra of azurin, Biochim. Biophys. Acta 491, 155–159 (1977).

    CAS  PubMed  Google Scholar 

  28. K. Ugurbil, A. H. Maki, and R. Bersohn, study of the triplet state properties of tyrosines and tryptophan in azurins using optically detected magnetic resonance, Biochemistry 16, 901–907 (1977).

    CAS  PubMed  Google Scholar 

  29. C. F. Beyer, W. A. Gibbons, L. C. Craig, and J. W. Longworth, Heterogeneous tryptophan environments in the cyclic peptides tyrocidines B and C, J. Biol. Chem. 249, 3204–3211 (1974).

    CAS  PubMed  Google Scholar 

  30. K. L. Bell and H. C. Brenner, Phosphorescence and optically detected magnetic resonance study of the tryptophan residue in human serum albumin, Biochemistry 21, 799–804 (1982).

    Article  CAS  PubMed  Google Scholar 

  31. W. C. Galley, Heterogeneity in protein emission spectra, in: Concepts of Biochemical Fluorescence Vol. 2 R. F. Chen and H. Edelhoch, eds.), pp. 409–439, Marcel Dekker, New York (1976).

    Google Scholar 

  32. S.-Y. Mao and A. H. Maki, Comparative phosphorescence and optically detected magnetic resonance studies of fatty acid binding to serum albumin, Biochemistry 26, 3576–3582 (1987).

    CAS  PubMed  Google Scholar 

  33. M. V. Hershberger, A. H. Maki, and W. C. Galley, Phosphorescence and optically detected magnetic resonance studies of a class of anomalous tryptophan residues in globular proteins, Biochemistry 19, 2204–2209 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. R. M. Purkey and W. C. Galley, Phosphorescence studies of environmental heterogeneity for tryptophyl residues in proteins, Biochemistry 9, 3569–3574 (1970).

    Article  CAS  PubMed  Google Scholar 

  35. D. B. Calhoun, J. M. Vanderkooi, G. V. Woodrow III, and S. W. Englander, Penetration of dioxygen into proteins studied by quenching of phosphorescence and fluorescence, Biochemistry 22, 1526–1532 (1983).

    CAS  PubMed  Google Scholar 

  36. C. A. Parker, Photoluminescence of Solutions, pp. 97–127, Elsevier, Amsterdam (1968).

    Google Scholar 

  37. M. E. McCarville and S. P. McGlynn, Delayed luminescence of organic mixed crystals-XI. Amino acids and proteins, Photochem. Photobiol. 10, 171–181 (1969).

    CAS  PubMed  Google Scholar 

  38. D. V. Bent and E. Hayon, Excited state chemistry of aromatic amino acids and related peptides. III. Tryptophan, J. Am. Chem. Soc. 97, 2612–2619 (1975).

    CAS  PubMed  Google Scholar 

  39. C. Pepmiller, E. Bedwell, R. R. Kuntz, and C. A. Ghiron, A flash photolysis study of 1-methylindole, Photochem. Photobiol. 38, 273–280 (1983).

    CAS  Google Scholar 

  40. G. B. Strambini and M. Gonnelli, The indole nucleus triplet-state lifetime and its dependence on solvent microviscosity, Chem. Phys. Lett. 115, 196–200 (1985).

    Article  CAS  Google Scholar 

  41. I. Munro, I. Pecht, and L. Stryer, Subnanosecond motions of tryptophan residues in proteins, Proc. Natl. Acad. Sci. U.S.A. 76, 56–60 (1979).

    CAS  PubMed  Google Scholar 

  42. I. R. Lakowicz, B. P. Maliwal, H. Cherek, and A. Baiter, Rotational freedom of tryptophan residues in proteins and peptides, Biochemistry 22, 1741–1752 (1983).

    CAS  PubMed  Google Scholar 

  43. S. Georghiou, M. Thompson, and A. H. Mukhopadhyay, Melittin-phospholipid interaction. Evidence for melittin aggregation, Biochim. Biophys. Acta 642, 429–432 (1981).

    CAS  PubMed  Google Scholar 

  44. J. A. B. Ross, C. J. Schmidt, and L. Brand, Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20, 4369–4377 (1981).

    CAS  PubMed  Google Scholar 

  45. J. W. Petrich, J. W. Longworth, and G. R. Fleming, Internal motion and electron transfer in proteins: A picosecond fluorescence study of three homologous azurins. Biochemistry 26, 2711–2722 (1987).

    CAS  PubMed  Google Scholar 

  46. M. Nakanishi, M. Kobayashi, M. Tsuboi, C. Takasaki, and N. Tamiya, Electronic spectroscopy and deuteration kinetics of tyrosine and tryptophan residues: An application to the study of erabutoxin b. Biochemistry 19, 3204–3208 (1980).

    Article  CAS  PubMed  Google Scholar 

  47. I. H. Leaver, On the room temperature phosphorescence of wool keratin, Photochem. Photobiol. 27, 439–443 (1978).

    CAS  Google Scholar 

  48. G. B. Strambini and E. Gabellieri, Intrinsic phosphorescence from proteins in the solid states, Photochem. Photobiol. 39, 725–729 (1984).

    CAS  PubMed  Google Scholar 

  49. J. E. Churchich, Luminescence properties of muramidase and reoxidized muramidase, Biochim. Biophys. Acta 92, 194–197 (1964).

    CAS  PubMed  Google Scholar 

  50. M. K. Eftink and C. A. Ghiron, Review of fluorescence quenching studies with proteins, Anal. Biochem. 114, 199–227 (1981).

    Article  CAS  PubMed  Google Scholar 

  51. D. B. Calhoun, J. M. Vanderkooi, G. R. Holtom, and S. W. Englander, Protein fluorescence quenching by smallmolecules:Protein penetrationversus solventexposure, Proteins 1, 109–115 (1986).

    Article  CAS  PubMed  Google Scholar 

  52. O. Stern and M. Volmer, Über die abklingunszeit der fluoreszenz, Physik. Zeitschr. 20, 183–188 (1919).

    CAS  Google Scholar 

  53. D. B. Calhoun, J. M. Vanderkooi, and S. W. Englander, Penetration of small molecules into proteinsstudied by quenching of phosphorescence and fluorescence, Biochemistry 22, 1533–1539 (1983).

    CAS  PubMed  Google Scholar 

  54. G. B. Strambini, Singular oxygen effects on the room-temperature phosphorescence of alcohol dehydrogenase from horse liver, Biophys. J. 43, 127–130 (1983).

    CAS  PubMed  Google Scholar 

  55. G. B. Strambini, Quenching of alkaline phosphatase phosphorescence by O 2 and NO, Biophys. J. 52, 23–28 (1987).

    CAS  PubMed  Google Scholar 

  56. N. Barboy and J. Feitelson, Quenching of tryptophan phosphorescence in alcohol dehydrogenase from horse liver and its temperature dependence, Photochem. Photobiol. 41, 9–13 (1985).

    CAS  PubMed  Google Scholar 

  57. J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson, An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence, J. Biol. Chem. 262, 5476–5482 (1987).

    CAS  PubMed  Google Scholar 

  58. D. B. Calhoun, W. W. Wright, S. W. Englander, and J. M. Vanderkooi, The quenching of room temperature protein phosphorescence by added small molecules, Biochemistry 27, 8466–8474 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. J. R. Lakowicz and G. Weber, Quenching of protein fluorescence by oxygen. Detection of structural fluctuations on proteins on the nanosecond time scale Biochemistry 12, 4171–4179 (1973).

    CAS  PubMed  Google Scholar 

  60. O. L. J. Gijzeman, F. Kaufman, and G. Porter, Oxygen quenching of aromatic triplet states in solution, J. Chem. Soc., Faraday Trans. 2, 69,708–720 (1973).

    Google Scholar 

  61. J. Saltiel and B. W. Atwater, Spin-statistical factors in diffusion-controlled reactions, Adv. Photochem. 14, 1–90 (1988).

    CAS  Google Scholar 

  62. F. R. N. Gurd and M. Rothgeb, Motions in proteins, Adv. Protein Chem. 33, 73–165 (1979).

    CAS  PubMed  Google Scholar 

  63. S. W. Englander and N. R. Kallenbach, Hydrogen exchange and structural dynamics of proteins and nucleic acids, Q. Rev. Biophys. 16, 521–655 (1984).

    Google Scholar 

  64. M. Karplus and J. A. McCammon, The internal dynamics of globular proteins, CRC Crit. Rev. Biochem. 9, 293–349 (1981).

    CAS  PubMed  Google Scholar 

  65. F. M. Richards, Packing defects, cavities, volume fluctuations and access to the interior of proteins, Carlsberg Res. Commun. 44, 47–63 (1979).

    CAS  Google Scholar 

  66. B. Somogyi, J. A. Norman, and A. Rosenberg, Gated quenching of intrinsic fluorescence and phosphorescence of globular proteins, Biophys. J. 50, 55–61 (1986).

    CAS  PubMed  Google Scholar 

  67. E. Gratton, D. M. Jameson, and G. Weber, Model of dynamic quenching of fluorescence in globular proteins, Biophys. J. 45, 789–794 (1984).

    CAS  PubMed  Google Scholar 

  68. N. J. Turro, Modern Molecular Photochemistry, pp. 296–361, Benjamin/Cummings, Menlo Park, California (1978).

    Google Scholar 

  69. J. R. Miller, J. A. Peeples, M. J. Schmitt, and G. L. Closs, Long-distance fluorescence quenching by electron transfer in rigid solutions, J. Am. Chem. Soc. 104, 6488–6493 (1982).

    CAS  Google Scholar 

  70. H. E. Zemel and B. M. Hoffman, Long-range triplet-triplet energy transfer within metal-substituted hemoglobins, J. Am. Chem. Soc. 103, 1192–1201 (1981).

    Article  CAS  Google Scholar 

  71. H. Koloczek, T. Horie, T. Yonetani, H. Anni, G. Maniara, and J. M. Vanderkooi, Interaction between cytochrome c and cytochrome c peroxidase: Excited-state reactions of zinc-and tinsubstituted derivatives, Biochemistry 26, 3142–3148 (1987).

    Article  CAS  PubMed  Google Scholar 

  72. J. M. Vanderkooi, S. W. Englander, S. Papp, W. W. Wright, and C. S. Owen, Long-range electron exchange measured in proteins by quenching of tryptophan phosphorescence, Proc. Natl. Acad. Sci. USA, 5099–5103 (1990).

    Google Scholar 

  73. L. Augenstein and J. Nag-Caudhur, Energy transfer in Proteins, Nature 203, 1145–1146 (1964).

    CAS  PubMed  Google Scholar 

  74. E. Kuntz, F. Bishai, and L. Augenstein, Quantitative emission spectroscopy in media where appreciable light scattering occurs, Nature 212, 980–983 (1966).

    CAS  Google Scholar 

  75. J. Domanus, G. B. Strambini, and W. C. Galley, Heterogeneity in the thermally-induced quenching of the phosphorescence of multi-tryptophan proteins, Photochem. Photobiol. 34, 15–21 (1980).

    Google Scholar 

  76. G. B. Strambini, P. Cioni, and R. A. Felicioli, Characterization of tryptophan environments in glutamate dehydrogenases from temperature-dependent phosphorescence, Biochemistry 26, 4968–4975 (1987).

    CAS  PubMed  Google Scholar 

  77. Y. Kai and K. Imakubo, Temperature dependence of the phosphorescence lifetimes of heterogeneous tryptophan residues in globular proteins between 293 and 77 K, Photochem. Photobiol. 29, 261–265 (1979).

    CAS  Google Scholar 

  78. E. Bismuto, G. B. Strambini, and G. Irace, Temperature dependence of phosphorescence parameters of phylogenetically distant apomyoglobins, Photochem. Photobiol. 45, 741–744 (1987).

    CAS  PubMed  Google Scholar 

  79. J. M. Vanderkooi, S. Papp, T. Samoriski, S. Pikula, and A. Martonosi, Tryptophan phosphorescence of the Ca2+-ATPase sarcoplamic reticulum, Biochim. Biophys. Acta 957, 230–236 (1988).

    CAS  PubMed  Google Scholar 

  80. G. B. Strambini and M. Gonnelli, Effects of urea and guanidine hydrochloride on the activity and dynamical structure of equine liver alcohol dehydrogenase, Biochemistry 25, 2471–2476 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. M. Gonnelli and G. B. Strambini, The rate of equine liver alcohol dehydrogenase denaturation by urea: Dependence on temperature and denaturant concentration, Biophys. Chem. 24, 161–167 (1986).

    Article  CAS  PubMed  Google Scholar 

  82. T. M. Jovin, M. Bartholdi, W. L. C. Vaz, and R. H. Austin, Rotational diffusion of biological macromolecules by time-resolved delayed luminescence (phosphorescence, fluorescence) anisotropy, Ann. N. Y. Acad. Sci. 366, 176–196 (1981).

    CAS  PubMed  Google Scholar 

  83. R. J. Cherry, Measurement of protein rotational diffusion in membranes by flash photolysis, Methods Enzymol. L1X, 47–61 (1978).

    Google Scholar 

  84. K. Kinosita, Jr. S. Kawato, and A. Ikegami, Dynamic structure of biological and model membranes: Analysis by optical anisotropy decay measurement, Adv. Biophys. 17, 147–203 (1984).

    PubMed  Google Scholar 

  85. G. B. Strambini and W. C. Galley, Detection of slow rotational motions of proteins by steady-state phosphorescence anisotropy, Nature 260, 554–555 (1976).

    Article  CAS  PubMed  Google Scholar 

  86. G. B. Strambini and W. C. Galley, Time-dependent phosphorescence anisotropy measurements of the slow rotational motions of proteins in viscous solution, Biopolymers 19, 383–394 (1980).

    Article  CAS  Google Scholar 

  87. H. Kirn and W. C. Galley, Rotational mobility associated with the protein moiety of human serum lipoproteins from tryptophan phosphorescenceanisotropy measurements, Can. J. Biochem. Cell Biol. 61, 46–53 (1983).

    Google Scholar 

  88. G. B. Strambini and E. Gabellieri, Phosphorescence anisotropy of liver alcohol dehydrogenase in the crystalline state. Apparent glass-like rigidity of the coenzyme-binding domain, Biochemistry 26, 6527–6530 (1987).

    CAS  PubMed  Google Scholar 

  89. J. W. Berger and J. M. Vanderkooi, Intrinsic phosphorescence anisotropy measurements of the tobacco mosaic virus, work in progress.

    Google Scholar 

  90. T. Horie and J. M. Vanderkooi, Phosphorescence of alkaline phosphatase of E. coli in vitro and in situ, Biochim. Biophys. Acta 670, 290–297 (1981).

    Google Scholar 

  91. V. M. Mazhul, Y. S. Ermolaev, and C. V. Konev, Tryptophan phosphorescence at room temperature: New method for the study of the structural composition of biological membranes and proteins in cells, Zh. Prikl. Spectrosk. 32, 903–907 (1980).

    CAS  Google Scholar 

  92. T. Horie and J. M. Vanderkooi, Phosphorescence of tryptophan from parvalbumin and actin in liquid solutions, FEBS Lett. 147, 69–73 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vanderkooi, J.M. (2002). Tryptophan Phosphorescence from Proteins at Room Temperature. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-306-47059-4_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-47059-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43954-4

  • Online ISBN: 978-0-306-47059-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics