Skip to main content

Fluorescence-Based Fiber-Optic Sensors

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 2))

7.11. Conclusion

We have discussed some of the special problems and opportunities that result from employing fiber optics in fluorescence sensors and experiments. It should be evident that fiber optics do not represent a panacea, but rather a means for solving particular problems-sometimes elegantly. One purpose of this chapter was to stimulate the community to apply this technology to new experiments in biochemistry and biophysics; from the experimental demonstration of such techniques come the practical applications of tomorrow, c]

This work was performed while the author was with the Bio/Molecular Engineering Branch, Naval Research Laboratory, Washington, D.C. 20375.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proceedings of the First International Conference on Optical Fibre Sensors, Institute of Electrical Engineers, London (1983); Proceedings of the Second International Conference on Optical Fiber Sensors, VDE-Verlag, Berlin (1984); Proceedings of the Third International Conference on Optical Fiber Sensors, Optical Society of America, San Diego (1985); Proceedings of the Fourth International Conference on Optical Fiber Sensors, Institute of Electronics and Communication Engineers of Japan, Tokyo (1986).

    Google Scholar 

  2. A. M. Scheggi (ed.), Proceedings of SPIE Conference on Fiber Optic Sensors II, Proc. SPIE 798 (1987).

    Google Scholar 

  3. S. M. Angel, Optrodes: Chemically selective fiber optic sensors, Spectroscopy 2(4), 34–38 (1987).

    Google Scholar 

  4. W. R. Seitz, Chemical sensors based on fiber optics, Anal. Chem. 56, 16A–34A (1984).

    CAS  Google Scholar 

  5. R. B. Thompson and F. S. Ligler, Chemistry and technology of evanescent wave biosensors, in: Biosensors with Fiberoptics (D. L. Wise and L. Wingard, ed.), Humana Press Clifton, New Jersey, pp. 111–138 (1991).

    Google Scholar 

  6. A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, London (1983)

    Google Scholar 

  7. Projects in Fiber Optics, Newport Corporation, Fountain Valley, California (1986).

    Google Scholar 

  8. J. E. Midwinter, Optical Fibers for Transmission, John Wiley & Sons, New York (1979).

    Google Scholar 

  9. N. J. Harrick, Internal Reflection Spectroscopy, Harrick Scientific, Ossining, New York (1979).

    Google Scholar 

  10. N. J. Harrick and G. I. Loeb, Multiple internal reflection fluorescence spectrometry, Anal. Chem. 45, 687–691 (1973).

    Article  CAS  Google Scholar 

  11. D. Axelrod, T. P. Burghardt, and N. L. Thompson, Total internal reflection fluorescence, Annu. Rev. Biophys. Bioeng. 13, 247–268 (1984).

    Article  CAS  PubMed  Google Scholar 

  12. T. P. Burghardt and D. Axelrod, Total internal reflection/fluorescence photobleaching recovery study of serum albumin adsorption dynamics, Biophys. J. 33, 455–468 (1981).

    CAS  PubMed  Google Scholar 

  13. M. N. Kronick and W. A. Little, A new immunoassay based on fluorescence excitation by internal reflection spectroscopy, J. Immunol. Methods 8, 235–240 (1975).

    Article  CAS  PubMed  Google Scholar 

  14. T. E. Hirschfeld, Fluorescent immunoassay employing optical fiber in capillary tube, U.S. Patent 4, 447, 546 (1984).

    Google Scholar 

  15. K. A. Wickersheim and M. Sun, Phosphors and fiber optics remove doubt from difficult temperature measurements, Res. Dev. 1985 (11), 114–119.

    Google Scholar 

  16. O. S. Wolfbeis, H. E. Posch, and H. W. Kroneis, Fiber optical fluorosensor for determination of halothane and/or oxygen, Anal. Chem. 57, 2556–2561 (1985).

    Article  CAS  Google Scholar 

  17. L. A. Saari and W. R. Seitz, Immobilized morin as fluorescence sensor for determination of A1(III), Anal. Chem. 55, 667–670 (1983).

    Article  CAS  Google Scholar 

  18. L. A. Saari and W. R. Seitz, pH sensor based on immobilized fluorcsceinamine, Anal. Chem. 54, 821–823 (1982).

    CAS  Google Scholar 

  19. D. M. Hercules (ed.), Fluorescence and Phosphorescence Analysis, Wiley-Interscience, New York (1965).

    Google Scholar 

  20. S. Udenfriend, Fluorescence Assay in Biology and Medicine, Vols. 1 and 2, Academic Press, New York (1962, 1969).

    Google Scholar 

  21. C. E. White and R. J. Argauer, Fluorescence Analysis: A Practical Approach, Marcel Dekker, New York (1970).

    Google Scholar 

  22. J. I. Peterson, R. V. Fitzgerald, and D. K. Buckhold, Fiber optic probe for in vivo measurement of oxygen partial pressure, Anal. Chem. 56, 62–67 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. E. D. Lee, T. C. Werner, and W. R. Seitz, Luminescence ratio indicators for oxygen, Anal. Chem. 59, 279–283 (1987).

    CAS  Google Scholar 

  24. F. V. Bright, Remote sensing with a multifrequency phase-modulation fluorometer in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, pp. 23–28 (1988).

    Google Scholar 

  25. O. S. Wolfbeis and M. J. P. Leiner, Recent progress in optical oxygen sensing, in: Proceedings of the SPIE Conference on Optical Fibers in Medicine III, Proc. SPIE 906, pp. 42–48 (1988).

    Google Scholar 

  26. D. M. Jordan, D. R. Walt, and F. P. Milanovich, Physiological pH fiber-optic chemical sensor based on energy transfer, Anal. Chem. 59, 437–439 (1987).

    Article  CAS  Google Scholar 

  27. J. L. Gehrich, D. W. Lubbers, N. Opitz, D. R. Hansmann, W. W. Miller, J. K. Tusa, and M. Yafuso, Optical fluorescence and its application to an intravascular blood gas monitoring system, IEEE Trans. Biomed. Eng. BME-33, 117–132 (1986).

    Google Scholar 

  28. J. I. Peterson, S. R. Goldstein, R. V. Fitzgerald, and D. K. Buckhold, Fiber optic pH probe for physiological use, Anal. Chem. 52, 864–869 (1980).

    Article  CAS  PubMed  Google Scholar 

  29. W. A. Wyatt, F. V. Bright, and G. M. Hieftje, Characterization and comparison of three fiber-optic sensors for iodide determination based on dynamic fluorescence quenching of rhodamine 6G, Anal. Chem. 59, 2272–2276 (1987).

    CAS  Google Scholar 

  30. C. Dahne, R. M. Sutherland, J. F. Place, and A. S. Ringrose, Detection of antibody-antigen reactions at a glass-liquid interface: A novel fibre-optic sensor concept, in: Proceedings of the Second International Conference on Optical Fiber Sensors (R. T. Kersten and R. Kist, eds.), pp. 75–79, VDE-Verlag, Berlin (1984).

    Google Scholar 

  31. J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, K. Newby, and J.-N. Lin, Remote fiber-optic biosensors based on evanescent-excited fluoroimmunoassay: Concept and progress, IEEE Trans. Electron Devices, ED-32, 1175–1179 (1985).

    CAS  Google Scholar 

  32. C. A. Villarruel, D. D. Dominguez, and A. Dandridge, Evanescent wave fiber optic chemical sensor, in: Proceedings of the SPIE Conference on Fiber Optic Sensors II, Proc. SPIE 798, 225–229 (1987).

    Google Scholar 

  33. W. F. Love and R. E. Slovacek, Fiber optic evanescent sensor for fluoroimmunoassay, in: Proceedings of the Fourth International Conference on Optical Fiber Sensors, Institute of Electronics and Communication Engineers of Japan, Tokyo (1986).

    Google Scholar 

  34. T. P. Burghardt and N. L. Thompson, Effect of planar dielectric interfaces on fluorescence emission and detection, Biophys. J. 46, 729–737 (1984)

    CAS  PubMed  Google Scholar 

  35. E.-H. Lee, R. E. Benner, J. B. Fenn, and R. K. Chang, Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation, Appl. Opt. 18, 862–868 (1979).

    CAS  Google Scholar 

  36. J. P. Dakin and A. J. King, Limitations of a single optical fibre fluorimeter system due to background fluorescence, in: Proceedings of the First International Conference on Optical Fibre Sensors, pp. 195–199, Institution of Electrical Engineers, London (1983).

    Google Scholar 

  37. K. Newby, W. M. Reichert, J. D. Andrade, and R. E. Benner, Remote spectroscopic sensing of chemical adsorption using a single multimode optical fiber, Appl. Opt. 23, 1812–1815 (1984).

    CAS  Google Scholar 

  38. J. R. Lakowicz and H. Cherek, Phase-sensitive fluorescence spectroscopy: A new method to resolve fluorescence lifetimes or emission spectra of components in a mixture of fluorophores, J. Biochem. Biophys. Methods 5, 19–35 (1981).

    Article  CAS  PubMed  Google Scholar 

  39. E. Gratton and D. M. Jameson, New approach to phase and modulation resolved spectra, Anal. Chem. 57, 1694–1697 (1985).

    Article  CAS  Google Scholar 

  40. T. H. Gray, Optical Pulse Compression, Spectra-Physics Laser Technical Bulletin No. 11, Spectra-Physics Laser Products Division, Mountain View, California (1987).

    Google Scholar 

  41. Drawing No. 705328, Polaroid Corp., Commercial Optics and Precision Devices, Cambridge, Massachusetts.

    Google Scholar 

  42. O. Svelto, Principles of Lasers, 2nd Ed., Plenum Press, New York (1982).

    Google Scholar 

  43. T. V. Higgins (ed.), Lasers and Optronics Buying Guide, Gordon Publications, Dover, New Jersey (1988).

    Google Scholar 

  44. R. B. Thompson and L. Vallarino, Novel fluorescent label for time resolved fluorescence immunoassay, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, pp. 426–433 (1988).

    Google Scholar 

  45. G. Tohmon, K. Yamamoto, and T. Taniuchi, Blue light source using guided-wave frequency doubler with a diode laser, in: SPIE Conference on Miniature Optics and Lasers, Proc. SPIE 898, pp. 70–75 (1988).

    Google Scholar 

  46. J. R. Lakowicz and I. Gryczynski, Frequency domain fluorescence spectroscopy, in: Topics in Fluorescence Spectroscopy, Volume I, Techniques (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 293–335 (1991).

    Google Scholar 

  47. M. G. Badea and L. Brand, Time-resolved fluorescence measurements, Methods Enzymol. 61, 378–425 (1979).

    CAS  PubMed  Google Scholar 

  48. R. F. Steiner, Fluorescence anisotropy, theory and applications, in: Topics in Fluorescence Spectroscopy, Volume II, Principles (J. R. Lakowicz, ed.), Plenum Press, New York, pp. 1–51 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Thompson, R.B. (2002). Fluorescence-Based Fiber-Optic Sensors. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-47058-6_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47058-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43875-2

  • Online ISBN: 978-0-306-47058-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics