Skip to main content

The Global Analysis of Fluorescence Intensity and Anisotropy Decay Data: Second-Generation Theory and Programs

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Brand, J. R. Knutson, L. Davenport, J. M. Beechem, R. Dale, A. Kowalczyk, and D. Walbridge, in: Spectroscopy and Dynamics of Molecular Biological Systems (P. Bayley and R. Dale, eds.), pp. 259–305, Academic Press, New York (1984).

    Google Scholar 

  2. D. G. Walbridge, J. R. Knutson, and L. Brand, Nanosecond time-resolved fluorescence measurements during protein denaturation, Anal. Biochem. 161, 467–478 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. M. K. Han, D. G. Walbridge, J. R. Knutson, L. Brand, and S. Roseman, Nanosecond time-resolved fluorescence kinetic studies of the 5, 5′-dithiobis(2-nitrobenzoic acid) reaction with enzyme I of the phosphoenolpyruvate:glucose phosphotransferase system, Anal. Biochem. 161, 479–486 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. F. V. Bright, C. A. Monnig, and G. M. Hieftje, Rapid frequency-scanned fiber-optic fluorometer capable of subnanosecond lifetime determinations, Anal. Chem. 58, 3139–3144 (1986).

    CAS  Google Scholar 

  5. B. Feddersen, J. M. Beechem, J. Fishkin, and E. Gratton, Direct waveform collection and analysis of phase fluorometry data, Biophys. J. 53, 404a (1988).

    Google Scholar 

  6. J. R. Knutson, Fluorescence detection: Schemes to combine speed, sensitivity and spatial resolution, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, 51–60 (1988).

    Google Scholar 

  7. A. E. W. Knight and B. K. Selinger, The deconvolution of fluorescence decay curves. A non-method for real data, Spectrochim. Acta 27A, 1223–1234 (1971).

    Google Scholar 

  8. A. Grinvald and I. Z. Steinberg, On the analysis of fluorescence decay kinetics by the method of least squares, Anal. Biochem. 59, 583–598 (1974).

    Article  CAS  PubMed  Google Scholar 

  9. M. L. Johnson and S. G. Frasier, Non-linear least-squares analysis, Methods Enzymol. 117, 301–342 (1985).

    CAS  Google Scholar 

  10. I. Isenberg and R. D. Dyson, The analysis of fluorescence decay by the methods of moments, Biophys, J. 9, 1337–1350, (1969).

    CAS  Google Scholar 

  11. E. W. Small and I. Isenberg, On moment index displacement, J. Chem. Phys. 66, 3347–3351 (1977).

    CAS  Google Scholar 

  12. A. Gafni, R. L. Modlin, and L. Brand, Analysis of fluorescence decay curves by means of Laplace transformation, Biophys, J. 15, 263–280 (1975).

    CAS  Google Scholar 

  13. M. Ameloot and H. Hendrickx, Extension of the performance of Laplace deconvolution in the analysis of fluorescence decay curves, Biophys. J. 44, 27–38 (1983).

    CAS  PubMed  Google Scholar 

  14. B. Valuer and J. Moirez, Analyse des courbes de decroissance multiexponentielles par la méthode des fonctions modulatrices. Application a la fluorescence, J. Chim. Phys. Chim. Biol. 70, 500–506 (1973).

    Google Scholar 

  15. J. Eisenfeld and C. C. Ford, A systems theory approach to the analysis of multiexponential fluorescence decay, Biophys. J. 26, 73–88 (1979).

    CAS  PubMed  Google Scholar 

  16. J. Eisenfeld, Systems analysis approaches, in: Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology (R. B. Cundall and R. E. Dale, eds.), pp. 233–238, Plenum, New York (1983).

    Google Scholar 

  17. P. Wahl and J. C. Auchet, Resolution des spectres de fluorescence au moyen des declines. Application a l’étude de la serum albumine, Biochim. Biophys, Ada 285, 99–117 (1972).

    CAS  Google Scholar 

  18. P. Gauduchon and P. Wahl, Pulse fluorimetry of tyrosyl peptides, Biophys. Chem. 8, 87–104 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. J. R. Knutson, J. M. Beechem, and L. Brand, Simultaneous analysis of multiple fluorescence decay curves: A global approach, Chem. Phys. Lett. 102, 501–507 (1983).

    Article  CAS  Google Scholar 

  20. J. M. Beechem, J. R. Knutson, J. B. A. Ross, B. W. Turner, and L. Brand, Global resolution of heterogeneous decay by phase/modulation fluorometry: Mixtures and proteins, Biochemistry 22, 6054–6058 (1983).

    Article  CAS  Google Scholar 

  21. J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton, and M. Limkeman, Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46, 463–477 (1984).

    CAS  PubMed  Google Scholar 

  22. E. Gratton, M. Limkeman, J. R. Lakowicz, B. Maliwal, H. Cherek, and G. Laczko, Resolution of mixtures of fluorophores using variable-frequency phase and modulation data, Biophys. J. 46, 479–486 (1984).

    CAS  PubMed  Google Scholar 

  23. J. M. Beechem, M. Ameloot, and L. Brand, Global and target analysis of complex decay phenomena, Anal. Instrum. 14, 379–402 (1985).

    CAS  Google Scholar 

  24. J. M. Beechem, M. Ameloot, and L. Brand, Global analysis of fluorescence decay surfaces: Excited-state reactions, Chem. Phys. Lett. 120, 466–472 (1985).

    Article  CAS  Google Scholar 

  25. J. M. Beechem, J. R. Knutson, and L. Brand, Global analysis of multiple dye fluorescence anisotropy experiments on proteins, Biochem. Soc. Trans. 14, 832 835 (1986).

    PubMed  Google Scholar 

  26. J. M. Beechem and E. Gratton, Fluorescence spectroscopy data analysis environment: A second generation global analysis program, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, 70–81 (1988).

    Google Scholar 

  27. M. Ameloot, J. M. Beechem, and L. Brand, Simultaneous analysis of multiple fluorescence decay curves by Laplace transforms. Deconvolution with reference or excitation profiles, Biophys. Chem. 23, 155–171 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. M. D. Barkley, A. Kowalczyk, and L. Brand, Fluorescence decay studies of anisotropy rotations of small molecules, J. Chem. Phys. 75, 3581–3593 (1981).

    Article  CAS  Google Scholar 

  29. J. R. Knutson, D. G. Walbridge, and L. Brand, Decay associated fluorescence spectra and the heterogeneous emission of alcohol dehydrogenase, Biochemistry 21, 4671–4679 (1982).

    Article  CAS  PubMed  Google Scholar 

  30. J. B. A. Ross, C. J. Schmidt, and L. Brand, Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20, 4361 (1981).

    CAS  PubMed  Google Scholar 

  31. J. M. Beechem and L. Brand, Time-resolved fluorescence of proteins, Annu. Rev. Biochem. 54, 43–71 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. J. R. Knutson, D. G. Walbridge, and L. Brand, Studies of ligand binding to alcohol dehydrogenase with decay associated fluorescence spectroscopy, Biophys. J. 41, 168a (1983).

    Google Scholar 

  33. J. R. Knutson, S. H. Baker, A. G. Cappuccino, D. G. Walbridge, and L. Brand, Quenching decay associated spectra (QDAS) and indirect excitation DAS: Steady-state extensions of DAS, Photochem. Pholobiol. 37, s2l (1983).

    Google Scholar 

  34. W. W. Mantulin and J. M. Beechem, Alcohol dehydrogenase: Global analysis of fluorescence quenching, J. Cell Biol. 107, 842a (1988).

    Google Scholar 

  35. M. K. Han, Ph. D. thesis, The Johns Hopkins University, Baltimore (1988).

    Google Scholar 

  36. A. Arcioni and C. Zannoni, Intensity deconvolution in fluorescence depolarization studies of liquids, liquid crystals and membranes, Chem. Phys. 88, 113–128 (1984).

    Article  CAS  Google Scholar 

  37. D. Piston, T. Bilash, and E. Gratton, A compartmental analysis approach to fluorescence anisotropy: Perylene in viscous solvents, J. Phys. Chem. 93, 3963–3967 (1989).

    Article  CAS  Google Scholar 

  38. International Mathematical and Statistical Libraries, Inc., Houston, Texas.

    Google Scholar 

  39. Matrix Eigensystem Routines, Eispack Guide, Lecture Notes in Computer Science, Vol. 6, Springer, Berlin (1976).

    Google Scholar 

  40. D. W. Marquardt, An algorithm for least squares estimation of nonlinear parameters, Society for Industrial and Applied Mathematics 11, 431–441 (1963).

    Google Scholar 

  41. K. Levenberg, A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2, 164–168 (1944).

    Google Scholar 

  42. J. R. Knutson, Global analysis of fluorescence data: Some extensions, Biophys. J. 51, 285a (1987).

    Google Scholar 

  43. C. Chen, Linear System Theory and Design, Holt, Rinehart & Winston, New York (1984).

    Google Scholar 

  44. J. A. Jacquez, Compartmental Analysis in Biology and Medicine, Elsevier, Amsterdam (1984).

    Google Scholar 

  45. J. E. Löfroth, Time-resolved emission spectra, decay-associated spectra, and species-associated spectra, J. Phys. Chem. 90, 1160–1168 (1986).

    Google Scholar 

  46. W. C. Giffin, Transform Techniques for Probability Modeling, Academic Press, New York (1975).

    Google Scholar 

  47. S. W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Comp. Phys. Commun. 27, 213–227 (1982).

    Google Scholar 

  48. S. W. Provencher, CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations, Comp. Phys. Commun. 27, 229–242 (1982).

    Google Scholar 

  49. J. Skilling and R. K. Bryan, Maximum entropy image reconstruction, general algorithm, Mon. Not. R. Astron. Soc. 211, 111–124 (1984).

    Google Scholar 

  50. A. K. Livesey, M. Delaye, P. Licinio, and J. C. Brochon, Maximum entropy analysis of dynamic parameters via the Laplace transform, Faraday Discuss. Chem. Soc. 83, 1–12 (1987).

    Article  Google Scholar 

  51. A. K. Livesey and J. C. Brochon, Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method, Biophys. J. 52, 693–706 (1987).

    CAS  Google Scholar 

  52. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, W. H. Freeman, San Francisco (1963).

    Google Scholar 

  53. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore (1983).

    Google Scholar 

  54. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York (1981).

    Google Scholar 

  55. M. Ameloot, J. M. Beechem, and L. Brand, Compartmental modeling of excited-state reactions: Identifiability of the rate constants from fluorescence decay curves, Chem. Phys. Lett. 129, 211–219 (1986).

    Article  CAS  Google Scholar 

  56. W. R. Laws and L. Brand, Analysis of two state excited state reactions. The fluorescence decay of 2-naphthol, J. Phys. Chem. 83, 795–802 (1979).

    Article  CAS  Google Scholar 

  57. L. Davenport, J. R. Knutson, and L. Brand, Excited-state proton transfer of equilinin and dihydroequilinin: Interaction with bilayer vesicles, Biochemistry 25, 1186–1195 (1986).

    CAS  PubMed  Google Scholar 

  58. E. Haas, M. Wilchek, E. Katchalski-Katzir, and I. Z. Steinberg, Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer, Proc. Natl. Acad. Sci. U.S.A. 72, 1807–1811 (1975).

    CAS  PubMed  Google Scholar 

  59. E. Haas and I. Z. Steinberg, Intramolecular dynamics of chain molecules monitored by fluctuations in efficiency of excitation energy transfer, Biophys. J. 46, 429–437 (1984).

    CAS  PubMed  Google Scholar 

  60. A. Grinvald, E. Haas, and I. Z. Steinberg, Evaluation of the distribution of distances between energy donors and acceptors by fluorescence decay, Proc. Natl. Acad. Sci. U.S.A. 69, 2273–2277 (1972).

    CAS  Google Scholar 

  61. J. R. Lakowicz, M. L. Johnson, W. Wiczk, A. Bhat, and R. F. Steiner, Resolution of a distribution of distances by fluorescence energy transfer and frequency-domain fluorometry, Chem. Phys. Lett. 138, 587–593 (1987).

    Article  CAS  Google Scholar 

  62. H. C. Cheung, C. Wang, I. Gryczynski, M. L. Johnson, and J. R. Lakowicz, Distribution of distances in native and denatured troponin I, from frequency-domain measurements of fluorescence energy transfer, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, 163–169 (1988).

    Google Scholar 

  63. E. Haas, E. Katchalski-Katzir, and I. Z. Steinberg, Brownian motion of the ends of oligopeptide chains in solution estimated by energy transfer between the chain ends, Biopolymer 17, 11–31 (1978).

    Article  CAS  Google Scholar 

  64. J. M. Beechem and E. Haas, Simultaneous determination of intramolecular distance distribution and conformational dynamics by global analysis of energy transfer measurements, Biophys. J. 55, 1225–1236 (1989).

    CAS  PubMed  Google Scholar 

  65. G. Lipari and A. Szabo, Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes, Biophys. J. 30, 489–506 (1980).

    CAS  PubMed  Google Scholar 

  66. T. J. Chuang and K. B. Eisenthal, Theory of fluorescence depolarization by anisotropic rotation1 diffusion, J. Chem. Phys. 57, 5094–5097 (1972).

    Article  CAS  Google Scholar 

  67. G. G. Belford, R. L. Belford, and G. Weber, Dynamics of fluorescence depolarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69, 1392–1393 (1972).

    CAS  Google Scholar 

  68. M. Ehrenberg and R. Rigler, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14, 539–544 (1972).

    Article  CAS  Google Scholar 

  69. E. W. Small and I. Eisenberg, Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy, Biopolymers 16, 1907–1928 (1977).

    Article  CAS  PubMed  Google Scholar 

  70. C. W. Gilbert, A vector method for non-linear least squares reconvolution and fitting analysis of polarized fluorescence decay data, in: Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology (R. Cundall and R. Dale, eds.), NATO ASI publication, Plenum Press, New York (1980).

    Google Scholar 

  71. A. Cross and G. R. Fleming, Analysis of time resolved fluorescence anisotropy decays, Biophys. J. 46, 45–56 (1984).

    CAS  PubMed  Google Scholar 

  72. J. M. Beechem and L. Brand, Global analysis of fluorescence decay: Applications to some unusual and theoretical studies, Photochem. Photobiol. 44, 323–329 (1986).

    CAS  PubMed  Google Scholar 

  73. R. D. Ludescher, L. Peting, S. Hudson, and B. Hudson, Time-resolved fluorescence anisotropy for systems with lifetime and dynamic heterogeneity, Biophys. Chem. 28, 59–75 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. J. M. Beechem, J. R. Knutson, and L. Brand, Global analysis of associative and non-associative systems, Photochem. Photobiol. 39, 41s (1984).

    Google Scholar 

  75. J. R. Knutson, L. Davenport, and L. Brand, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity: 1. Theory and applications, Biochemistry 25, 1805–1810 (1986).

    Article  CAS  PubMed  Google Scholar 

  76. L. Davenport, J. R. Knutson, and L. Brand, Anisotropy decay associated spectra: 2. DPH in lipid bilayers, Biochemistry 25, 1811–1816 (1986).

    CAS  PubMed  Google Scholar 

  77. L. Davenport, J. R. Knutson, and L. Brand, Studies of membrane heterogeneity using fluorescence associative techniques, Faraday Discuss. Chem. Soc. 81, 81–94 (1986).

    Article  CAS  PubMed  Google Scholar 

  78. G. Weber, Theory of differential phase fluorometry: Detection of anisotropy molecular rotations, J. Chem. Phys. 66, 4081–4091 (1977).

    Article  CAS  Google Scholar 

  79. W. Mantulin and G. Weber, Rotational anisotropy and solvent-fluorophore bonds: An investigation by differential polarized phase fluorometry, J. Chem. Phys. 66, 4092–4099 (1977).

    Article  CAS  Google Scholar 

  80. J. R. Lakowicz, I. Gryczynski, and H. Cherek, Resolution of three-rotational correlation times for perylene by frequency-domain fluorescence spectroscopy, Biophys. J. 53, 87a (1988).

    Google Scholar 

  81. L. Davenport, J. R. Knutson, and L. Brand, Time resolved fluorescence anisotropy of membrane probes: Rotations gated by packing fluctuations, in: Time-Resolved Laser Spectroscopy in Biochemistry (J. R. Lakowicz, ed.), Proc. SPIE 909, 163–169 (1988).

    Google Scholar 

  82. L. Davenport, J. R. Knutson, and L. Brand, Fluorescence studies of membrane dynamics and heterogeneity, in: Subcellular Biochemistry (J. R. Harris, ed.), Vol. 14, Plenum, New York (1988).

    Google Scholar 

  83. J. R. Knutson and J. R. Lakowicz, Studies on the correlation between fluorophore rotation and solvent relaxation in bilayers, Biophys. J. 36, 80a (1980).

    Google Scholar 

  84. F. Jahnig, Critical effects from lipid-protein interaction in membranes L, Biophys. J. 36, 329–345 (1981).

    CAS  PubMed  Google Scholar 

  85. S. Mitaku, T. Jippo, and R. Kataoka, Thermodynamic properties of the lipid bilayer transition: Pseudocritical phenomena, Biophys. J. 42, 137–144 (1983).

    CAS  PubMed  Google Scholar 

  86. G. L. Atkins, Multicompartment Models in Biological Systems, Methuen, London (1969).

    Google Scholar 

  87. D. H. Anderson, Compartmental Modeling and Tracer Kinetics, Lecture Notes in Bio-mathematics, Vol. 50, Springer, Berlin (1983).

    Google Scholar 

  88. K. Godfrey, Compartmental Models and Their Application, Academic Press, New York (1983).

    Google Scholar 

  89. H. van Langen, Y. K. Levine, M. Ameloot, and H. Pottel, Ambiguities in the interpretation of time-resolved fluorescence anisotropy measurements on lipid vesicle systems, Chem. Phys. Lett. 140, 394 (1987).

    Google Scholar 

  90. J. Eisenfeld, A simple solution to the compartmental structural-identifiability problem, Math. Biosci. 79, 209–220 (1986).

    Google Scholar 

  91. J. A. Jacquez and P. Grief, Numerical parameter identifiability and estimability: Integrating identifiability, estimability and optimal sampling design, Math. Biosci. 77, 201–227 (1985).

    Google Scholar 

  92. W. H. Press, B. Flannery, S. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Programming, Cambridge University Press, Cambridge (1986).

    Google Scholar 

  93. R. T. Ross, C. Lee, and S. Leurgans, Multilinear analysis of biomolecular fluorescence, Biophys, J. 55, 191a (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Beechem, J.M., Gratton, E., Ameloot, M., Knutson, J.R., Brand, L. (2002). The Global Analysis of Fluorescence Intensity and Anisotropy Decay Data: Second-Generation Theory and Programs. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-306-47058-6_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47058-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43875-2

  • Online ISBN: 978-0-306-47058-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics