Skip to main content

Frequency-Domain Fluorescence Spectroscopy

  • Chapter
Topics in Fluorescence Spectroscopy

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 1))

5.6. Summary

In this chapter we described instrumentation, basic theory, and applications of first- (1-200 MHz) and second-generation (2 GHz) frequency-domain fluorometers. The frequency-domain data provide excellent resolution of time-dependent spectral parameters. It is possible to resolve closely spaced fluorescence lifetimes, even in the picosecond region, and to determine multiexponential decays of anisotropy. Correlation times as short as 10 ps have been measured. Several novel applications are described, including picosecond fluorescence of hemoglobin and enhanced resolution of anisotropy decays using combination quenching and multiwavelength global measurements and analysis, as well as unusual behavior of phase and modulation data for associated anisotropy decays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. B. A. Ross, K. W. Roussling, and L. Brand, Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase, Biochemistry 20, 4369–4377 (1981).

    CAS  PubMed  Google Scholar 

  2. I. Munro, I. Pecht, and L. Stryer, Subnanosecond motions of tryptophan residues in proteins, Proc. Natl. Acad. Sci. U.S.A. 65, 56–60 (1979).

    Google Scholar 

  3. I. Gryczynski, M. Eftink, and J. R. Lakowicz, Conformation heterogeneity in proteins as origin of heterogeneous fluorescence decays, illustrated by native and denatured ribonuclease T 1 , Biochim. Biophys. Acta 954, 244–252 (1988).

    CAS  PubMed  Google Scholar 

  4. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C. Wang, and M. L. Johnson, Distance distributions in native and random-coil troponin I from frequency-domain measurements of fluorescence energy transfer, Biopolymers 27, 821–830 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. J. R. Lakowicz, M. L. Johnson, I. Gryczynski, N. Joshi, and G. Laczko, Transient effects in fluorescence quenching measured by 2GHz frequency-domain fluorometry, J. Phys. Chem. 91, 3277–3285 (1987).

    Article  CAS  Google Scholar 

  6. J. R. Lakowicz, N. B. Joshi, M. L. Johnson, H. Szmacinski, and I. Gryczynski, Diffusion coefficients of quenchers in proteins from transient effects in the intensity decays, J. Biol. Chem. 262, 10907–10910 (1987).

    CAS  PubMed  Google Scholar 

  7. Z. Gaviola, Ein Fluorometer, Apparat zur Messung von Fluoreszenzabklingungszeiten, Z. Phys. 42, 853–861 (1926).

    Google Scholar 

  8. J. B. Birks and D. J. Dyson, Phase and modulation fluorometer, J. Sci. Instrum. 38, 282–285 (1961).

    Article  Google Scholar 

  9. E. A. Bailey and G. K. Rollefson, The determination of the fluorescence lifetimes of dissolved substances by a phase shift method, J. Chem. Phys. 21, 1315–1326 (1953).

    Article  CAS  Google Scholar 

  10. A. M. Bonch-Breuvich, I. M. Kazarin, V. A. Molchanov, and I. V. Shirokov, An experimental model of a phase fluoremeter, Instrum. Exp. Tech. (USSR) 2, 231–236 (1959).

    Google Scholar 

  11. R. D. Spencer and G. Weber, Measurement of subnanosecond fluorescence lifetimes with a cross-correlation phase fluorometer, Ann. N.Y. Acad. Sci. 158, 361–376 (1969).

    CAS  Google Scholar 

  12. E. Gratton and M. Limkeman, A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution, Biophys. J. 44, 315–324 (1983).

    CAS  PubMed  Google Scholar 

  13. J. R. Lakowicz and B. P. Maliwal, Construction and performance of a variable-frequency phase-modulation fluorometer, Biophys. Chem. 21, 61–78 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. J. R. Lakowicz, G. Laczko, H. Cherek, E. Gratton, and M. Limkeman, Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data, Biophys. J. 46, 463–477 (1984).

    CAS  PubMed  Google Scholar 

  15. E. Gratton, M. Limkeman, J. R. Lakowicz, B. Maliwal, H. Cherek, and G. Laczko, Resolution of mixtures of fluorophores using variable-frequency phase and modulation data, Biophys. J. 46, 479–486 (1984).

    CAS  PubMed  Google Scholar 

  16. J. R. Lakowicz, G. Laczko, I. Gryczynski, and H. Cherek, Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry, J. Biol. Chem. 261, 2240–2245 (1986).

    CAS  PubMed  Google Scholar 

  17. H. Szmacinski, R. Jayaweera, H. Cherek, and J. R. Lakowicz, Demonstration of an associated anisotropy decay by frequency-domain fluorometry, Biophys. Chem. 27, 233–241 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. I. Gryczynski, H. Cherek, and J. R. Lakowicz, Detection of three rotational correlation times for a rigid asymmetric molecule using frequency-domain fluorometry, Biophys. Chem. 30, 271–277 (1988).

    CAS  PubMed  Google Scholar 

  19. J. R. Lakowicz, H. Cherek, B. Maliwal, and E. Gratton, Time-resolved fluorescence anisotropies of fluorophores in solvents and lipid bilayers obtained from frequency-domain phase-modulation fluorometry. Biochemistry 14, 376–383 (1985).

    Google Scholar 

  20. J. R. Alcala, E. Gratton, and F. G. Prendergast, Resolvability of fluorescence lifetime distributions using phase fluorometry, Biophys. J. 51, 587–596 (1987).

    CAS  PubMed  Google Scholar 

  21. J. R. Acala, E. Gratton, and F. G. Prendergast, Interpretation of fluorescence decays in proteins using continuous lifetime distributions, Biophys. J. 51, 925–936 (1987).

    Google Scholar 

  22. J. R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M. L. Johnson, Analysis of fluorescence decay kinetics measured in the frequency-domain using distribution of decay times, Biophys. Chem. 28, 35–50 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. I. Gryczynski, W. Wiczk, M. L. Johnson, and J. R. Lakowicz, End-to-end distance distributions of flexible molecules from steady state fluorescence energy transfer and quenching-induced changes in the Förster distance. Chem. Phys. Lett. 145, 439–446 (1988).

    Article  CAS  Google Scholar 

  24. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C. Wang, M. L. Johnson, and N. Joshi, Distance distributions in proteins recovered using frequency-domain fluorometry; applications totroponin I and its complex with troponin C, Biochemistry 27, 9149–9160 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. J. R. Lakowicz, G. Laczko, and I. Gryczynski, A 2 GHz frequency-domain fluorometer, Rev. Sci. Instrum. 57, 2499–2506 (1986).

    Article  CAS  Google Scholar 

  26. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz, A 10GHz frequency-domain fluorometer, Rev. Sci. Instrum. 61, 2331–2337 (1990).

    Article  CAS  Google Scholar 

  27. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York (1969).

    Google Scholar 

  28. G. G. Belford, R. L. Belford, and G. Weber, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. 69, 1392–1393 (1972).

    CAS  PubMed  Google Scholar 

  29. T. J. Chuang and K. B. Eisenthal, Theory of fluorescence depolarization by anisotropic rotational diffusion, J. Chem. Phys. 57, 5094–5097 (1972).

    Article  CAS  Google Scholar 

  30. M. D. Barkley, A. A. Kowalczyk, and L. Brand, Fluorescence decay studies of anisotropic rotations of small molecules, J. Chem. Phys. 75, 3581–3593 (1978).

    Google Scholar 

  31. L. A. Chen, R. E. Dale, S. Roth, and L. Brand, Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyl-lecithin vesicles and the determination of “microviscosity”, J. Biol. Chem. 252, 2163–2169 (1977).

    CAS  PubMed  Google Scholar 

  32. J. Yguerabide, H. F. Epstein, and L. Stryer, Segmental mobility in an antibody molecule, J. Mol. Biol. 51, 573–590 (1970).

    Article  CAS  PubMed  Google Scholar 

  33. G. Weber, Polarization of the fluorescence of solutions, in: Fluorescence and Phosphorescence Analysis (D. M. Hercules, ed.), pp. 217–240, John Wiley & Sons, New York (1966).

    Google Scholar 

  34. G. Weber, Polarization of the fluorescence of macromolecules I: Theory and experimental method, Biochem. J. 51, 145–155 (1952).

    CAS  PubMed  Google Scholar 

  35. G. Weber, Theory of differential phase fluorometry: Detection of anisotropic molecular rotations, J. Chem. Phys. 66, 4081–4091 (1977).

    Article  CAS  Google Scholar 

  36. B. P. Maliwal and J. R. Lakowicz, Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: A simulation study, Biochim. Biophys. Acta 873, 161–172 (1986).

    CAS  PubMed  Google Scholar 

  37. B. P. Maliwal, A. Hermetter, and J. R. Lakowicz, A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: Internal motions of N-methylanthraniloyl melittin, Biochim. Biophys. Acta 873, 173–181 (1986).

    CAS  PubMed  Google Scholar 

  38. R. D. Spencer and G. Weber, Influence of Brownian rotations and energy transfer upon the measurement of fluorescence lifetimes. J. Chem. Phys. 52, 1654–1663 (1970).

    Article  CAS  Google Scholar 

  39. W. Szymanowski, Einfluss der Rotation der Moleküle auf die Messungen der Abklingzert des Fluoreszenzstrahlung, Z. Phys. 95, 466–473 (1935).

    CAS  Google Scholar 

  40. R. K. Bauer, Polarization and decay of fluorescence of solution, Z. Naturforsch. 18A, 718–724 (1963).

    CAS  Google Scholar 

  41. A. Grinvald and I. Z. Steinberg, On the analysis of fluorescence decay kinetics by the method of least-squares, Anal. Biochem. 59, 583–598 (1974).

    Article  CAS  PubMed  Google Scholar 

  42. J. R. Taylor, An Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, University Science Books, Mill Valley, California (1982).

    Google Scholar 

  43. I. P. Kaminov, An Introduction to Electro-Optic Devices, Academic Press, New York (1984).

    Google Scholar 

  44. E. Gratton and R. Lopez-Delgado, Measuring fluorescence decay times by phase-shift and modulation techniques using the high harmonic content of pulsed light sources. Nuovo Cimento B56, 110–124 (1980).

    Google Scholar 

  45. E. Gratton, D. M. James, N. Rosato, and G. Weber, Multifrequency cross-correlation phase fluorometer using synchrotron radiation, Rev. Sci. Instrum. 55, 486–494 (1984).

    Article  CAS  Google Scholar 

  46. A. J. W. C. Visser and A. V. Mack, The fluorescence decay of reduced nicotinamides in aqueous solution after excitation with uv-mode locked Ar ion laser, Photochem. Photobiol. 33, 35–40 (1981).

    CAS  Google Scholar 

  47. C. J. Peters, Gigacycle-bandwidth coherent-light traveling wave amplitude modulator, Proc. IEEE 53, 455–460 (May 1965).

    Google Scholar 

  48. G. White and G. M. Chin, Traveling wave electro-optic modulators, Opt. Commun. 5, 374–379 (1972).

    Article  Google Scholar 

  49. H. S. Merkelo, S. R. Hartman, T. Mar, G. S. Singhal, and Govindjee, Mode-locked lasers: Measurements of very fast radiative decay in fluorescent systems. Science 164, 301–303 (1969).

    CAS  PubMed  Google Scholar 

  50. K. Berndt, H. Duerr, and D. Palme, Picosecond phase fluorometry by mode-locked CW lasers, Opt. Commun. 42, 419–422 (1982).

    Article  CAS  Google Scholar 

  51. S. Kinosita and T. Kushida, Picosecond fluorescence spectroscopy by time-correlated single-photon counting, Anal. Instrum. 14, 503–524 (1985).

    Google Scholar 

  52. I. Yamazaki, N. Tamai, H. Kume, H. Tsuchiya, and K. Oba, Microchannel-plate photomultiplier: Applicability to the time-correlated photon-counting method, Rev. Sci. Instrum. 56, 1187–1194 (1985).

    Article  CAS  Google Scholar 

  53. J. R. Lakowicz, G. Laczko, H. Szmacinski, I. Gryczynski, and W. Wiczk, Gigahertz, frequency-domain fluorometry: Resolution of complex decays, picosecond processes and future developments, J. Photochem. Photobiol B: Biol. 2, 295–311 (1988).

    CAS  Google Scholar 

  54. A. G. Szabo and D. M. Rayner, Fluorescence decay of tryptophan conformers in aqueus solution. J. Am. Chem. Soc. 102, 554–563 (1980).

    Article  CAS  Google Scholar 

  55. J. R. Lakowicz, R. Jayaweera, H. Szmacinski, and W. Wiczk, Resolution of two emission spectra for tryptophan using frequency-domain phase-modulation spectra, Photochem. Photobiol. 47, 541–546 (1989).

    Google Scholar 

  56. B. Alpert, D. M. Jameson, and G. Weber, Tryptophan emission from human hemoglobin and its isolated subunits, Photochem. Photobiol. 31, 1–4 (1980).

    CAS  PubMed  Google Scholar 

  57. R. E. Hirsch, R. S. Zukin, and R. L. Nagel, Intrinsic fluorescence emission of intact oxy hemoglobins, Biochem. Biophys. Res. Commun. 93, 432–439 (1980).

    CAS  PubMed  Google Scholar 

  58. R. E. Hirsch and R. L. Nagel, Conformational studies of hemoglobin using intrinsic fluorescence measurements, J. Biol. Chem. 256, 1080–1083 (1981).

    CAS  PubMed  Google Scholar 

  59. A. G. Szabo, D. Krajcarski, M. Zuker, and B. Alpert, Conformational heterogeneity in hemoglobin as determined by picosecond fluorescence decay measurements, Chem. Phys. Lett. 108, 145–149 (1984).

    Article  CAS  Google Scholar 

  60. J. Albani, B. Alpert, D. Krajcarski, and A. G. Szabo, A fluorescence decay time study of tryptophan in isolated hemoglobin subunits, FEBS Lett. 182, 302–304 (1985).

    Article  CAS  PubMed  Google Scholar 

  61. R. M. Hochstrasser and D. K. Negus, Picosecond fluorescence decay of tryptophans in myoglobin, Proc. Natl. Acad. Sci. U.S.A. 81, 4399–4403 (1989).

    Google Scholar 

  62. E. Bucci, H. Malak, C. Fronticelli, I. Gryczynski, and J. R. Lakowicz, Resolution of the lifetimes and correlation times of the intrinsic tryptophan fluorescence of human hemoglobin solutions using 2GHz frequency-domain fluorometry, J. Biol. Chem. 263, 6972–6977 (1988).

    CAS  PubMed  Google Scholar 

  63. E. Bucci, H. Malak, C. Fronticelli, I. Gryczynski, and J. R. Lakowicz, Resolution at 2GHz of lifetimes and correlation times of highly purified solutions of human hemoglobins, Proceedings of the International Symposium in Honor of Gregorio Weber’s Seventieth Birthday, held September 9–12, 1986, in Broca di Magra, Italy, Plenum Press, New York (1989).

    Google Scholar 

  64. E. Bucci, H. Malak, C. Fronticelli, I. Gryczynski, G. Laczko, and J. R. Lakowicz, Timeresolved emission spectra of hemoglobin on the picosecond time scale, Biophys. Chem. 32, 187–198 (1988).

    Article  CAS  PubMed  Google Scholar 

  65. D. R. James, D. R. Dremmer, R. P. Steer, and R. E. Verral, Fluorescence lifetime quenching and anisotropy studies of ribonuclease T 1 , Biochemistry 24, 5517–5526 (1985).

    CAS  PubMed  Google Scholar 

  66. J. R. Lakowicz, H. Cherek, I. Gryczynski, N. Joshi, and M. L. Johnson, Enhanced resolution of fluorescence anisotropy decay by simultaneous analysis of progressively quenched samples. Applications to anisotropic rotations and to protein dynamics, Biophys. J. 51, 755–768 (1988).

    Google Scholar 

  67. J. R. Lakowicz, H. Szmacinski, and I. Gryczynski, Picosecond resolution of indole anisotropy decays and spectral relaxation by 2GHz frequency-domain fluorometry, Photochem. Photobiol. 47, 31–41 (1988).

    CAS  PubMed  Google Scholar 

  68. I. Gryczynski, H. Cherek, G. Laczko, and J. R. Lakowicz, Enhanced resolution of anisotropic rotational diffusion by multi-wavelength frequency-domain fluorometry and global analysis, Chem. Phys. Lett. 135, 193–199 (1987).

    Article  CAS  Google Scholar 

  69. I. Gryczynski, Z. Gryczynski, A. Kawski, and S. Paszyc, Directions of the electronic transition moments of synthetic Y 1 -base, Photochem. Photobiol. 39, 319–322 (1984).

    CAS  Google Scholar 

  70. L. Davenport, J. R. Knutson, and L. Brand, Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 1, 6-Diphenylhexatriene in lipid bilayers, Biochemistry 25, 1811–1816 (1986).

    CAS  PubMed  Google Scholar 

  71. L. S. Stryer, The interactions of a naphthalene dye with apomyoglobin and apohemoglobin: A fluorescent probe of non-polar binding sites, J. Mol. Biol. 13, 482–487 (1965).

    CAS  PubMed  Google Scholar 

  72. G. Laczko and J. R. Lakowicz, A 6 GHz frequency-domain fluorometer, Biophys. J. 55, 190a (Abstr.) (1989).

    Google Scholar 

  73. J. R. Lakowicz and G. Laczko, A 10 GHz frequency-domain fluorometer, in: Time Resolved Laser Spectroscopy II, Proc. SPIE (J. R. Lakowicz, ed.), 1204, 13–20 (1990).

    Google Scholar 

  74. J. R. Lakowicz and G. Laczko, A 10 GHz frequency-domain fluorometer, Rev. Set. Instrum. 61, 2331–2337 (1990).

    Google Scholar 

  75. B. F. Feddersen, D. W. Piston, and E. Gratton, Digital parallel acquisition in frequency domain fluorometry, Rev. Sci. Instrum. 60, 2929–2936 (1989).

    Article  Google Scholar 

  76. C. Mitchell and K. Swift, The 48000 MHF TM , a dual-domain Fourier transform fluorescence lifetime spectrofluorometer, Proc. SPIE (J. R. Lakowicz, ed.), 1204, 270–274.

    Google Scholar 

  77. B. A. Feddersen, D. W. Piston, and E. Gratton, Digital parallel acquisition in frequency domain fluorimetry, Rev. Sci. Instrum. 60, 2929–2936 (1989).

    Article  Google Scholar 

  78. E. Gratton, B. Feddersen, and M. van de Ven, Parallel acquisition of fluorescence decay using array detectors, in: Time-Resolved Laser Spectroscopy II, Proc. SPIE (J. R. Lakowicz, ed.), 1204, 21–25 (1990).

    Google Scholar 

  79. J. R. Lakowicz, R. Jayaweera, H. Szmacinski, and W. Wiczk, Resolution of multicomponent fluorescence emission using frequency-dependent phase angle and modulation spectra, Analytical Chem. 62, 2005–2012 (1990).

    Article  CAS  Google Scholar 

  80. J. R. Lakowicz and K. Berndt, Frequency-domain measurements of photon migration in tissues, Chem. Phys. Lett. 166, 246–252 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lakowicz, J.R., Gryczynski, I. (2002). Frequency-Domain Fluorescence Spectroscopy. In: Lakowicz, J.R. (eds) Topics in Fluorescence Spectroscopy. Topics in Fluorescence Spectroscopy, vol 1. Springer, Boston, MA. https://doi.org/10.1007/0-306-47057-8_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47057-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43874-5

  • Online ISBN: 978-0-306-47057-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics