Advertisement

Perfect Actions

Chapter
  • 535 Downloads
Part of the NATO Science Series: B: book series (NSSB, volume 368)

Keywords

Continuum Limit Topological Charge Lattice Unit Fermionic Zero Mode Instanton Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. G. Wilson and J. B. Kogut, Phys. Rep. C12 (1974) 75; K. G. Wilson, Rev. Mod. Phys. 47 (1975) 773, ibid., 55 (1983) 583; K. G. Wilson, Adv. Math. 16 (1975) 176, 444.ADSCrossRefGoogle Scholar
  2. 2.
    P. Hasenfratz and F. Niedermayer, Nucl. Phys. B414 (1994) 785ADSCrossRefGoogle Scholar
  3. 3.
    For a recent summary on the perfect actions, see P. Hasenfratz, hep-lat/9709110.Google Scholar
  4. 4.
    V. N. Gribov and A. A. Migdal, Sov. Phys. JETP 28 (1968) 784; A. A. Migdal, Sov. Phys. JETP 32 (1971) 552; A. M. Polyakov, Sov. Phys. JETP 29 (1969) 533; M. A. Moore, Nuovo Cim. 3 (1972) 275.ADSGoogle Scholar
  5. 5.
    G. Parisi, Statistical Field Theory, Benjamin/Cummings (1988); J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, (1993).Google Scholar
  6. 6.
    J. Schwinger, Phys. Rev. 115 (1959) 721; G. C. Wick, Phys. Rev. 96 (1954) 1124.CrossRefADSzbMATHMathSciNetGoogle Scholar
  7. 7.
    M. Creutz, Quarks, Gluons and Lattices, Cambridge Univ. Press (1983); I. Montvay and G. Münster, Quantum Fields on the Lattice, Cambridge Univ. Press (1994).Google Scholar
  8. 8.
    S. K. Ma, Rev. Mod. Phys. 45 (1973) 589; S. K. Ma, Modern Theory of Critical Phenomena, Benjamin Reading, MA (1976); L. L. Kadanoff, Rev. Mod. Phys. 49 (1977) 267; Th. Niemeyer and J. M. J. van Leeuwen, Phys. Rev. Lett. 31 (1973) 1411.CrossRefADSGoogle Scholar
  9. 9.
    T. L. Bell and K. G. Wilson, Phys. Rev. B10 (1974) 3935.ADSMathSciNetGoogle Scholar
  10. 10.
    F. Wegner, Phys. Rev. B5 (1972) 4529.ADSGoogle Scholar
  11. 11.
    P. Hasenfratz, Nucl. Phys. B(Proc.Suppl.) 34 (1994) 3; T. DeGrand, A. Hasenfratz, P. Hasenfratz, F. Niedermayer and U.-J. Wiese, Nucl. Phys. B(Proc.Suppl.) 42 (1995) 67; F. Niedermayer, Nucl. Phys. B(Proc.Supph.) 53 (1997) 56.ADSCrossRefGoogle Scholar
  12. 12.
    U.-J. Wiese, Phys. Lett. B315 (1993) 417; W. Bietenholz and U.-J. Wiese, Nucl. Phys. B(Proc.Suppl.) 34 (1994) 516.ADSGoogle Scholar
  13. 13.
    T. DeGrand, A. Hasenfratz, P. Hasenfratz and F. Niedermayer, Nucl. Phys. B454 (1995) 587.ADSCrossRefGoogle Scholar
  14. 14.
    W. Bietenholz, R. Brower, S. Chandrasekharan and U.-J. Wiese, Nucl. Phys. B(Proc.Suppl.) 53 (1997) 921.ADSCrossRefGoogle Scholar
  15. 15.
    M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley (1995).Google Scholar
  16. 16.
    A. M. Polyakov, Gauge Fields and Strings, Harwood (1987).Google Scholar
  17. 17.
    A. A. Migdal, Sov. Phys. JETP 42 (1975) 413; 42 (1976) 743; L. Kadanoff, Ann. Phys.(NY) 100 (1976) 359; Rev. Mod. Phys. 49 (1977) 267.ADSGoogle Scholar
  18. 18.
    R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam (1982).zbMATHGoogle Scholar
  19. 19.
    P. Hasenfratz and F. Niedermayer, hep-latt/9706002.Google Scholar
  20. 20.
    P. Hasenfratz and H. Leutwyler, Nucl. Phys. B343 (1990) 241.ADSCrossRefGoogle Scholar
  21. 21.
    K. G. Wilson, Phys. Rev. D10 (1974) 2445; R. Balian, J.-M. Drouffe and C. I. Itzykson, Phys. Rev. D10 (1974) 3376.ADSGoogle Scholar
  22. 22.
    M. Blatter and F. Niedermayer, Nucl. Phys. B482 (1996) 286.ADSCrossRefGoogle Scholar
  23. 23.
    N. B. Nielsen and M. Ninomiya, Phys. Lett. B105 (1981) 219; Nucl. Phys. B185 (1981) 20.ADSGoogle Scholar
  24. 24.
    K. G. Wilson, in New Phenomena in Subnuclear Physics, ed. A. Zichichi, Plenum Press, New York (1997).Google Scholar
  25. 25.
    T. DeGrand, A. Hasenfratz, P. Hasenfratz, P. Kunszt and F. Niedermayer, Nucl. Phys. B(Proc.Suppl.) 53 (1997) 942.ADSCrossRefGoogle Scholar
  26. 26.
    P. Kunszt, hep-lat/9706019.Google Scholar
  27. 27.
    S. H. Shenker, in Recent Development in Field Theory and Statistical Mechanics, eds. J. B. Zuber and R. Stora, North Holland (1984).Google Scholar
  28. 28.
    Y. Iwasaki, Nucl. Phys. B314 (1989) 63.Google Scholar
  29. 29.
    K. Kawedzki and A. Kupiainen, Comm. Math. Phys. 77 (1980) 31.MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    E. Katz and U.-J. Wiese, comp-gas/9709001.Google Scholar
  31. 31.
    F. Niedermayer, Nucl. Phys. B(Proc.Suppl.) 34 (1994) 513; M. Blatter, R. Burkhalter, P. Hasenfratz and F. Niedermayer, Phys. Rev. D53 (1996) 923.ADSCrossRefGoogle Scholar
  32. 32.
    T. DeGrand, A. Hasenfratz and D. Zhu, Nucl. Phys. B475 (1996) 321; Nucl. Phys. B478 (1996) 349; Nucl. Phys. B(Proc.Suppl.) 53 (1997) 945.ADSCrossRefGoogle Scholar
  33. 33.
    R. Burkhalter, Phys. Rev. D54 (1996) 4121.ADSGoogle Scholar
  34. 34.
    W. Bietenholz, R. Brower, S. Chandrasekharan and U.-J. Wiese, hep-lat/9704015.Google Scholar
  35. 35.
    T. DeGrand, A. Hasenfratz and T. Kovacs, hep-lat/9705009.Google Scholar
  36. 36.
    P. Farchioni and A. Papa, hep-lat/9709012.Google Scholar
  37. 37.
    M. Atiyah and I. M. Singer, Ann. Math. 93 (1971) 139.MathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Hasenfratz and F. Niedermayer, unpublished.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of BernBernSwitzerland

Personalised recommendations