Skip to main content
  • 757 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. L. Huang and G. Sh. Gildenblat, “Measurements and modeling of the n-Channel MQSFET inversion layer mobility and device characteristics in the temperature range 60-300K,” IEEE Trans. on Electron Devices, vol. ED-37, pp. 1289–1300, 1990.

    Google Scholar 

  2. M. S. Liang, J. Y. Choi, P. K. Ko and C. Hu, “Inversion-layer capacitance and mobility of very thin gate-oxide MOSFETs”, IEEE Trans. Electron Devices, ED-33, p. 409, 1986.

    Google Scholar 

  3. S. M. Sze, Physics of Semiconductor Devices, New York: Wiley, 1981.

    Google Scholar 

  4. Y. Cheng et al., “Modeling temperature effects of quarter micrometer MOSFETs in BSIM3v3 for circuit simulation,” Semiconductor Science and Technology, Vol. 12, pp. 1349–1354, 1997.

    Google Scholar 

  5. N. Yasuda et al., “Analytical device model of SOI MOSFET’s including self-heating,” Japan. J. Appl. Phys., Vol.30, pp. 3677–3684, 1991.

    Google Scholar 

  6. G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, McGraw-Hill, Inc., New York, 1993.

    Google Scholar 

  7. N. Arora, MOSFET Models for VLSI Circuit Simulation, Springer-Verlag, Wien New York, 1994.

    Google Scholar 

  8. K. Lee et al, “Physical understanding of low field carrier mobility in silicon inversion layer,” IEEE Trans. Electron Devices, ED-38, p. 1905, 1991.

    Google Scholar 

  9. C. G. Sodini, P. K. Ko, and J. L. Moll, “The Effects of high fields on MOS device and circuit performance,” IEEE Trans. Electron Devices, ED-31, p. 1386, 1984.

    Google Scholar 

  10. E. A. Talkhan, I. R. Mansour, and A. I. Baroor, “Investigation of the effect of drift-filed-dependent mobility on MOSFET characteristics,” Part I and II, IEEE Trans. Electron Devices, ED-19, p. 899, 1972.

    Google Scholar 

  11. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET’s: part I-Effects of substrate Impurity Concentration”, IEEE Trans. Electron Devices, Vol. ED-41, p. 2357, 1994.

    Google Scholar 

  12. K. Chen et al., “MOSFET carrier mobility model based on gate oxide thickness, threshold and gate voltages”, Solid-State Electronics, pp. 1515–1518, Vol. 39, No. 10, October 1996.

    Article  Google Scholar 

  13. J. H. Huang et al., BSIM3 Manual (Version 2.0), University of California, Berkeley, March 1994.

    Google Scholar 

  14. Y. Cheng et al., BSIM3 version 3.1 User’s Manual, University of California, Berkeley, Memorandum No. UCB/ERL M97/2, 1997.

    Google Scholar 

  15. Y. Cheng et al., “Modeling of small size MOSFETs with reverse short channel and narrow width effects for circuit simulation”, Solid State Electronics, vol. 41, (9), pp. 1227–1231, 1997.

    Google Scholar 

  16. Y. Cheng et al., “A unified BSIM I-V mode for circuit simulation”, 1995 International semiconductor device research symposium, Charlottesville, pp. 312–313, Dec. 1995.

    Google Scholar 

  17. Y. Cheng et al., “An investigation on the robustness, accuracy and simulation performance of a physics-based deep-submicronmeter BSIM model for analog/digital circuit simulation”, CICC’96, pp. 321–324, May 1996.

    Google Scholar 

  18. W. Liu et al., BSIM3 version 3.2 User’s Manual, University of California, Berkeley.

    Google Scholar 

  19. BSIMpro Manual, BTA Inc., Santa Clara, CA (http://www.btat.com).

  20. G. S. Gildenblat, VLSI Electronics: Microstructure Science, p. 11, vol. 18, 1989.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Temperature Dependence Model. In: Mosfet Modeling & BSIM3 User’s Guide. Springer, Boston, MA. https://doi.org/10.1007/0-306-47050-0_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-47050-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8575-2

  • Online ISBN: 978-0-306-47050-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics