Skip to main content
Book cover

Biometrics pp 251–272Cite as

Objective Odour Measurements

  • Chapter

Abstract

The biological chemoreception mechanisms are complex, and the sense of smell is extremely powerful in terms of discrimination between complex mixtures of chemicals, sensitivity to certain classes of chemicals and the range of concentrations that are detectable. This chapter introduces the biological concepts of chemoreception and information processing and goes on to describe approaches in producing biomimetic devices that may ultimately be used for biometric applications. Promising sensor technologies applicable for use in sensor arrays are introduced, and information processing strategies applicable to the pattern recognition problems are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ohloff, “Chemistry of odor stimuli,” Experientia, Vol. 42 pp. 271–279, 1986.

    Article  Google Scholar 

  2. W. G. Freeman, “The Physiology of Perception,” Scientific American, Vol. 264, No. 2, pp.78–85, 1991.

    Article  MathSciNet  Google Scholar 

  3. L. B. Buck, “Information coding in the vertebrate olfactory system,” Annual Review Of Neuroscience, Vol. 19, pp. 517–544, 1996.

    Article  Google Scholar 

  4. K. Bauer, D. Garbe, and H. Surburg, Common fragrance and flavor materials, VCH Verlagsgesselschaft, FRG, 1990.

    Google Scholar 

  5. M. K. McClintock, “Menstrual synchrony and suppression,” Nature, Vol. 299, pp. 244–245, 1971.

    Article  Google Scholar 

  6. F. Wortmann, “Receptor multispecificity and similarities between the immune system, the sense of smell, and the nervous system from the point of view of clinical allergology,” Ann. Allergy, Vol. 59, pp. 65–73, 1987.

    Google Scholar 

  7. J. Amoore, Molecular Basis of Odor, Thomas, Springfield, Illinois, 1970.

    Google Scholar 

  8. F. H. H. Valentin and A. A. North, Odour control-A concise guide, Warren Springs Laboratory, Stevenage, 1980.

    Google Scholar 

  9. M. Hangartner, J. Hartung, M. Paduch, B. F. Pain, and J. H. Voorburg, “Improved recommendations on olfactometric measurements,” Environmental Technology Letters, Vol. 10, pp. 231, 1989.

    Article  Google Scholar 

  10. B. A. Sommerville, J. P. McCormick, and D. M. Broom, “Analysis of human sweat volatiles: an example of pattern recognition in the analysis and interpretation of gas chromatograms,” Pestic. Sci., Vol. 41, pp. 365–368, 1994.

    Article  Google Scholar 

  11. B. A. Sommerville, M. A. Green, and D. J. Gee, “Using chromatography and a dog to identify some of the compounds in human sweat which are under denetic influence,” Chemical signals in vertebrates Vol. 2 (Eds. D. W. MacDonald, D. Muller-Schwartze, S. E. Natynczug), Oxford University Press, Oxford, pp. 634–639, 1990.

    Google Scholar 

  12. S. Chandiok, B. A. Crawley, B. A. Oppenheim, P. R. Chadwick, S. Higgins, and K. C. Persaud, 1997, “Screening for bacterial vaginosis: a novel application of artificial nose technology,” J. Clin. Path., Vol. 50, No. 9, pp. 790–791, 1997.

    Article  Google Scholar 

  13. N. N. Tanyolac and J. R. Eaton, “Study of odors,” J. Am. Pharm. Assoc., Vol. 39, No. 10, pp. 565–574, 1950.

    Google Scholar 

  14. R. W. Moncrieff, “An instrument for measuring and classifying odors,” J. Appl. Physiology, Vol. 16, pp. 742–749, 1961.

    Google Scholar 

  15. W. F. Wilkens and J. D. Hartman, 1964, “An electronic analogue for the olfactory processes,” Ann. N.Y. Acad. Sci., Vol. 116, pp. 608–612, 1964.

    Article  Google Scholar 

  16. T. Buck, F. Allen, and M. Dalton, “Detection of chemical species by surface effects on metals and semiconductors”, In: Bregman and Dravnieks (eds.), Surface effects in detection, Spartan Books Inc., USA, 1965.

    Google Scholar 

  17. A. Dravnieks and P. Trotter, “Polar vapour detection based on thermal modulation of contact potentials,” J. Sci., Instrum., Vol. 42, pp. 642, 1965.

    Article  Google Scholar 

  18. K. C. Persaud and G. Dodd, “Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose,” Nature, Vol. 299, pp. 352–355, 1982.

    Article  Google Scholar 

  19. S. Zaromb and J. Stetter, “Theoretical basis for identification and measurement of air contaminants using an array of sensors having partly overlapping selectivities,” Sensors and Actuators, Vol. 6, pp. 225–243, 1984.

    Article  Google Scholar 

  20. B. Bott and T. Jones, “The use of multisensor systems in monitoring hazardous atmospheres,” Sensors and Actuators, Vol. 9, pp. 19–25, 1986.

    Article  Google Scholar 

  21. J. Stetter, P. Jurs, and S. Rose, “Detection of hazardous gases and vapors: pattern recognition analysis of data from an electrochemical sensor array,” Anal. Chem., Vol. 58, pp. 860–866, 1986.

    Article  Google Scholar 

  22. T. Otagawa and J. Stetter, “A chemical concentration modulation sensor for selective detection of airborne chemicals,” Sensors and Actuators, Vol. 11, pp. 251–264, 1987.

    Article  Google Scholar 

  23. J. Stetter, “Sensor array and catalytic filament for chemical analysis of vapors and mixtures,” Sensors and Actuators B, Vol. 1 pp. 43–47, 1990.

    Article  Google Scholar 

  24. J. Stetter, “Chemical sensor arrays: Practical insights and examples,” In Sensor and sensory systems for electronic nose, (Eds. Gardner J. and Bartlett P.), NATO ASI Series E: Applied Sciences, Vol. 212, Springer-Verlag, Berlin, pp. 273–301, 1992.

    Google Scholar 

  25. P. Moseley, J. Norris, D. Williams (eds.), Techniques and mechanisms in gas sensing, Adam Hilger, Bristol., 1991.

    Google Scholar 

  26. M. Egashira, Y. Shimizu, and Y. Takao, “Trimethylamine sensor based on semiconductive metal oxides for detection of fish freshness,” Sensors and Actuators B, Vol. 1, pp. 108–112, 1990.

    Article  Google Scholar 

  27. H. Abe, T. Yoshimura, S. Kanaya, Y. Takahashi, Y. Miyashita, and S. Sasaki, “Automated odor-sensing system based on plural semiconductor gas sensors and computerized pattern recognition techniques,” Analytica Chimica Acta, Vol. 194, pp. 1–9, 1987.

    Article  Google Scholar 

  28. H. Abe, S. Kanaya, Y. Takahashi, and S. Sasaki, “Extended studies of the automated odor-sensing system based on plural semiconductor gas sensors with computerized pattern recognition techniques,” Analytica Chimica Acta, Vol. 215, pp. 151–168, 1988.

    Article  Google Scholar 

  29. H. Shurmer, J. Gardner, and H. Chan, “The application of discrimination techniques to alcohols and tobaccos using tin-oxide sensors,” Sensors and Actuators, Vol. 18, pp. 361–371, 1989.

    Article  Google Scholar 

  30. U. Weimar, K. Schierbaum, and W. Göpel, “Pattern recognition methods for gas mixture analysis: Application to sensor arrays based upon SnO2,” Sensors and Actuators B, Vol. 1, pp. 93–96, 1990.

    Article  Google Scholar 

  31. R. Sleight, Evolutionary strategies and learning for neural networks, MSc. Dissertation, UMIST, 1990.

    Google Scholar 

  32. J. Gardner, E. Hines, and M. Wilkinson, “Application of artificial neural networks to an electronic olfactory system,” Meas. Sci. Technol., Vol. 1, pp. 446–451, 1990.

    Article  Google Scholar 

  33. E. Hines and J. Gardner, “An artificial emulator for an odour sensor array,” Sensors and Actuators B, Vols. 18–19, pp. 661–664, 1994.

    Article  Google Scholar 

  34. K. Ema, M. Yokoyama, T. Nakamoto, and T. Moriizumi, “Odour-sensing system using a quartz-resonator sensor array and neural-network pattern recognition,” Sensors and Actuators, Vol. 18, pp. 291–296, 1989.

    Article  Google Scholar 

  35. T. Nakamoto, K. Fukunishi, and T. Moriizumi, “Identification capability of odor sensor using quartz-resonator arrays and neural-network pattern recognition,” Sensors and Actuators B, Vol. 1, pp. 473–476, 1990.

    Article  Google Scholar 

  36. T. Nakamoto, A. Fukuda, and T. Moriizumi, “Improvement of identification capability in an odor-sensing system,” Sensors and Actuators B, Vol. 3, pp. 221–226, 1991.

    Article  Google Scholar 

  37. P. Pelosi and K. C. Persaud, “Gas sensors: Towards an artificial nose,” In Sensors and sensory systems for advanced robots, (Eds. Dario P. et al.), NATO ASI Series F: Computer and System Science, Springer-Verlag, Berlin, pp. 361–382, 1988.

    Google Scholar 

  38. K. C. Persaud, J. Bartlett, and P. Pelosi, “Design strategies for gas odour sensors which mimic the olfactory system,” In Robots and biological systems, (Eds. Dario P. et al.), NATO ASI Series, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  39. K. C. Persaud and P. Travers, “Multielement arrays for sensing volatile chemicals,” Intelligent Instruments and Computers, pp. 147–153, July–August, 1991.

    Google Scholar 

  40. K. C. Persaud and P. Pelosi, “Sensor arrays using conducting polymers for an artificial nose,” In Sensors and sensory systems for an electronic nose, (Eds. Gardner J. and Bartlett P), NATO ASI Series E: Applied Sciences, Vol. 212, Springer-Verlag, Berlin, pp. 237–256, 1992.

    Google Scholar 

  41. A. F. Diaz, K. K. Kanazawa, and G. P. Gardini, “Electrochemical polymerization of pyrrole,” J. Chem. Soc. Chem. Comms., pp. 635–636, 1979.

    Google Scholar 

  42. J. Roncali, “Conjugated poly(thiophenes): synthesis, functionalization, and applications,” Chem. Rev., Vol. 92, pp. 711–738, 1992.

    Article  Google Scholar 

  43. J. J. Miasik, A. Hooper, and B. C. Tofield, “Conducting polymer gas sensors,” J. Chem, Soc. Faraday Trans. 1, Vol. 82, pp. 1117–1126, 1986.

    Google Scholar 

  44. R. Cabala, V. Meister, and K. Potje-Kamloth, 1997, “Effect of competitive doping on sensing properties of polypyrrole,” J. Chem. Soc. Faraday Trans., Vol. 93, 131–137, 1997.

    Article  Google Scholar 

  45. G. Zott, G. Schiavon, and N. Comisso, “On effects on conductivity of isomorphous polypyrrole: charge pinning by nucleophilic anions,” Syn. Metals, Vol. 40, pp. 309–316, 1991.

    Article  Google Scholar 

  46. D. Bloor and B. Movaghar, 1983, “Conducting polymers,” IEE Proc. I, Vol. 130, pp. 225–232, 1983.

    Google Scholar 

  47. G. Zotti, G. Schiavon, and N. Comisso, 1990, “The charge-potential relationship in polyconjugated conducting polymers: Determination of E0 values and n-values for polypyrrole and polythiophene,” Electrochim. Acta, Vol. 35, pp. 1815–1819, 1990.

    Article  Google Scholar 

  48. H. S. Nalwa, “Phase-transitions in polypyrrole and polythiophene conducting plymers demonstrated by magnetic susceptibility measurements,” Phys. Rev. B-Condensed Matter, Vol. 39, pp. 5964–5974, 1989.

    Google Scholar 

  49. J. L. Brédas, B. Thémans, J. G. Fripiat, J. M. André, and R. R. Chance, “Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains: An ab initio study of the geometry and electronic-structure modifications upon doping,” Phys. Rev. B-Condensed Matter, Vol. 29, pp. 6761–6773, 1984.

    Google Scholar 

  50. G. B. Street, S. E. Lindsey, A. I. Nazzal, and K. J. Wynne, “The structure and mechanical properties of polypyrrole,” Mol. Cryst. Liq. Cryst., 118: 137–148, 1985.

    Article  Google Scholar 

  51. C. Nylander, M. Armgarth, and I. Lundström, In Proceedings of the international meeting on chemical sensors, Fukuoka, 1983. (Eds. Seiyama T, Fueki K, Shiokawa J, Suzuki S) Elsevier, Amsterdam, 1983.

    Google Scholar 

  52. J. Gardner and P. Bartlett, 1991, “Pattern recognition in gas sensing,” In Techniques and Mechanisms in Gas Sensing, (Eds. Moseley P. et al.), Adam Hilger, Bristol, pp. 347–384, 1991.

    Google Scholar 

  53. J. Moody and C. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation, Vol. 1, pp. 281–294, 1989.

    Google Scholar 

  54. M. Musavi, W. Ahmed, K. Chan, K. Faris, D. Hummels, On the training of radial basis function classifiers, Neural Networks, Vol. 5, pp. 595–603, 1992.

    Article  Google Scholar 

  55. T. Kohonen, Self-Organization and Associative Memory, Springer-Verlag, 3rd ed., pp. 199–202, 1989.

    Google Scholar 

  56. K. C. Persaud and H-G. Byun, 1998, “Classification of complex odours using conducting polymer arrays and neural networks,” In Industrial applications of neural networks, Eds. Fogelman Soulié, World Scientific, Singapore, New Jersey, pp. 85–90, 1998.

    Google Scholar 

  57. D-H. Lee, J. S. Payne, and H-G. Byun, and K. C. Persaud, 1996, “Application of radial basis neural networks to odour sensing using a broad specificity array of conducting polymers,” In Lecture Notes in computer science (Eds. C. Von der Malsburg, W. von Seelen, J. C. Vorbroggen, B. Sendhoff), Vol. 1112, pp. 299–304, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Persaud, K.C., Lee, D.H., Byun, H.G. (1996). Objective Odour Measurements. In: Jain, A.K., Bolle, R., Pankanti, S. (eds) Biometrics. Springer, Boston, MA. https://doi.org/10.1007/0-306-47044-6_12

Download citation

  • DOI: https://doi.org/10.1007/0-306-47044-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28539-9

  • Online ISBN: 978-0-306-47044-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics