Skip to main content

Embedded Image Coding Using Zerotrees of Wavelet Coefficients

  • Chapter

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 450))

Abstract

The Embedded Zerotree Wavelet Algorithm (EZW) is a simple, yet remarkably effective, image compression algorithm, having the property that the bits in the bit stream are generated in order of importance, yielding a fully embedded code. The embedded code represents a sequence of binary decisions that distinguish an image from the “null” image. Using an embedded coding algorithm, an encoder can terminate the encoding at any point thereby allowing a target rate or target distortion metric to be met exactly. Also, given a bit stream, the decoder can cease decoding at any point in the bit stream and still produce exactly the same image that would have been encoded at the bit rate corresponding to the truncated bit stream. In addition to producing a fully embedded bit stream, EZW consistently produces compression results that are competitive with virtually all known compression algorithms on standard test images. Yet this performance is achieved with a technique that requires absolutely no training, no pre-stored tables or codebooks, and requires no prior knowledge of the image source.

The EZW algorithm is based on four key concepts: 1) a discrete wavelet transform or hierarchical subband decomposition, 2) prediction of the absence of significant information across scales by exploiting the self-similarity inherent in images, 3) entropy-coded successive-approximation quantization, and 4) universal lossless data compression which is achieved via adaptive arithmetic coding.

©1993 IEEE. Reprinted, with permission, from IEEE Transactions on Signal Processing, pp.3445-62, Dec. 1993.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.H. Adelson, E. Simoncelli, and R. Hingorani, “Orthogonal pyramid transforms for image coding”, Proc. SPIE, vol. 845, Cambridge, MA, pp. 50–58, Oct. 1987.

    Google Scholar 

  2. R. Ansari, H. Gaggioni, and D.J. LeGall, “HDTV coding using a non-rectangular subband decomposition,” Proc. SPIE Conf. Vis. Commun. Image Processing, Cambridge, MA, pp. 821–824, Nov. 1988.

    Google Scholar 

  3. T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression, Prentice-Hall: Englewood Cliffs, NJ 1990.

    Google Scholar 

  4. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code”, IEEE Trans. Commun., vol. 31, pp. 532–540, 1983.

    Article  Google Scholar 

  5. R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection”, IEEE Trans. Inform. Theory, vol. 38, pp. 713–718, March, 1992.

    Article  Google Scholar 

  6. I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., vol.41, pp. 909–996, 1988.

    MATH  MathSciNet  Google Scholar 

  7. I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis”, IEEE Trans. Inform. Theory, vol. 36, pp. 961–1005, Sept. 1990.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. A. DeVore, B. Jawerth, and B. J. Lucier, “Image compression through wavelet transform coding”, IEEE Trans. Inform. Theory, vol. 38, pp. 719–746, March, 1992.

    Article  MathSciNet  Google Scholar 

  9. W. Equitz and T. Cover, “Successive refinement of information”, IEEE Trans. Inform. Theory, vol. 37, pp. 269–275, March 1991.

    Article  MathSciNet  Google Scholar 

  10. Y. Huang, H. M. Driezen, and N. P. Galatsanos “Prioritized DCT for Compression and Progressive Transmission of Images”, IEEE Trans. Image Processing, vol. 1, pp. 477–487, Oct. 1992.

    Google Scholar 

  11. N.S. Jayant and P. Noll, Digital Coding of Waveforms, Prentice-Hall: Engle-wood Cliffs, NJ 1984.

    Google Scholar 

  12. Y. H. Kim and J. W. Modestino, “Adaptive entropy coded subband coding of images”, IEEE Trans. Image Process., vol 1, pp. 31–48, Jan. 1992.

    Google Scholar 

  13. J. Kovačeveć and M. Vetterli, “Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for RnIEEE Trans. Inform. Theory, vol. 38, pp. 533–555, March, 1992.

    MathSciNet  Google Scholar 

  14. T. Lane, Independent JPEG Group’s free JPEG software, available by anonymous FTP at uunet.uu.net in the directory/graphics/jpeg. 1991.

    Google Scholar 

  15. A. S. Lewis and G. Knowles, “A 64 Kb/s Video Codec using the 2-D wavelet transform”, Proc. Data Compression Conf., Snowbird, Utah, IEEE Computer Society Press, 1991.

    Google Scholar 

  16. A. S. Lewis and G. Knowles, “Image Compression Using the 2-D Wavelet Transform”, IEEE Trans. Image Processing vol. 1 pp. 244–250, April 1992.

    Google Scholar 

  17. S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation”, IEEE Trans. Pattern Anal. Machine Intell. vol. 11 pp. 674–693, July 1989.

    Article  MATH  Google Scholar 

  18. S. Mallat, “Multifrequency channel decompositions of images and wavelet models”, IEEE Trans. Acoust. Speech and Signal Processing, vol. 37, pp. 2091–2110, Dec. 1990.

    Google Scholar 

  19. A. Pentland and B. Horowitz, “A practical approach to fractal-based image compression”, Proc. Data Compression Conf., Snowbird, Utah, IEEE Com-puter Society Press, 1991.

    Google Scholar 

  20. O. Rioul and M. Vetterli, “Wavelets and signal processing”, IEEE Signal Pro-cessing Magazine, vol. 8, pp. 14–38, Oct. 1991.

    Google Scholar 

  21. A. Said and W. A. Pearlman, “Image Compression using the Spatial-Orientation Tree”, Proc. IEEE Int. Symp. on Circuits and Systems, Chicago, IL, May 1993, pp. 279–282.

    Google Scholar 

  22. J. M. Shapiro, “An Embedded Wavelet Hierarchical Image Coder”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Proc., San Francisco, CA, March 1992.

    Google Scholar 

  23. J. M. Shapiro, “Adaptive multidimensional perfect reconstruction filter banks using McClellan transformations”, Proc. IEEE Int. Symp. Circuits Syst., San Diego, CA, May 1992.

    Google Scholar 

  24. J. M. Shapiro, “An embedded hierarchical image coder using zerotrees of wavelet coefficients”, Proc. Data Compression Conf., Snowbird, Utah, IEEE Computer Society Press, 1993.

    Google Scholar 

  25. J. M. Shapiro, “Application of the embedded wavelet hierarchical image coder to very low bit rate image coding”, Proc. IEEE Int. Conf. Acoust., Speech, Signal Proc., Minneapolis, MN, April 1993.

    Google Scholar 

  26. Special Issue of IEEE Trans. Inform. Theory, March 1992.

    Google Scholar 

  27. G. Strang, “Wavelets and dilation equations: A brief introduction”, SIAM Review vol. 4, pp. 614–627, Dec 1989.

    MATH  MathSciNet  Google Scholar 

  28. J. Vaisey and A. Gersho, “Image Compression with Variable Block Size Segmentation”, IEEE Trans. Signal Processing, vol. 40, pp. 2040–2060, Aug. 1992.

    Article  Google Scholar 

  29. M. Vetterli, J. Kovečević and D. J. LeGall, “Perfect reconstruction filter banks for HDTV representation and coding”, Image Commun., vol. 2, pp. 349–364,Oct 1990.

    Google Scholar 

  30. G. K. Wallace, “The JPEG Still Picture Compression Standard”, Commun. of the ACM, vol. 34, pp. 30–44, April 1991.

    Google Scholar 

  31. I. H. Witten, R. Neal, and J. G. Cleary, “Arithmetic coding for data compression”, Comm. ACM, vol. 30, pp. 520–540, June 1987.

    Article  Google Scholar 

  32. J. W. Woods ed. Subband Image Coding, Kluwer Academic Publishers, Boston, MA. 1991.

    Google Scholar 

  33. G.W. Wornell, “A Karhunen-Loéve expansion for 1/f processes via wavelets”, IEEE Trans. Inform. Theory, vol. 36, July 1990, pp. 859–861.

    Article  Google Scholar 

  34. Z. Xiong, N. Galatsanos, and M. Orchard, “Marginal analysis prioritization for image compression based on a hierarchical wavelet decomposition”,Proc. IEEE Int. Conf. Acoust., Speech, Signal Proc., Minneapolis, MN, April 1993.

    Google Scholar 

  35. W. Zettler, J. Huffman, and D. C. P. Linden, “Applications of compactly supported wavelets to image compression”, SPIE Image Processing and Algorithms, Santa Clara, CA 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Shapiro, J.M. (2002). Embedded Image Coding Using Zerotrees of Wavelet Coefficients. In: Topiwala, P.N. (eds) Wavelet Image and Video Compression. The International Series in Engineering and Computer Science, vol 450. Springer, Boston, MA. https://doi.org/10.1007/0-306-47043-8_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-47043-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8182-2

  • Online ISBN: 978-0-306-47043-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics