Skip to main content

Wavelet Still Image Coding: A Baseline MSE and HVS Approach

  • Chapter
Wavelet Image and Video Compression

Part of the book series: The International Series in Engineering and Computer Science ((SECS,volume 450))

  • 408 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Lu, R. Algazi, and R. Estes, “Comparison of Wavelet Image Coders Using the Picture Quality Scale,” UC-Davis preprint, 1995.

    Google Scholar 

  2. M. Antonini et al, “Image Coding Using Wavelet Transform,” IEEE Trans. Image Proc., pp. 205–220, April, 1992.

    Google Scholar 

  3. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

    Google Scholar 

  4. B. Chitraprasert, and K. Rao, “Human Visual Weighted Progressive Image Transmission,” IEEE Trans. Comm., vol. 38, pp. 1040–1044, 1990.

    Google Scholar 

  5. “Wavelet Scalar Quantization Fingerprint Image Compression Standard,” Criminal Justice Information Services, FBI, March, 1993.

    Google Scholar 

  6. A. Gersho and R. Gray, Vector Quantization and Signal Compression, Kluwer, 1992.

    Google Scholar 

  7. N. Griswold, “Perceptual Coding in the Cosine Transform Domain,” Opt. Eng., v. 19, pp. 306–311, 1980.

    Google Scholar 

  8. J. Huang and P. Schultheiss, “Block Quantization of Correlated Gaussian Variables,” IEEE Trans. Comm., CS-11, pp. 289–296, 1963.

    Google Scholar 

  9. W. Pennebaker and J. Mitchell, JPEG Still Image Data Compression Standard, Van Nostrand, 1993.

    Google Scholar 

  10. T. Lane et al, The Independent JPEG Group Software. ftp://ftp.uu.net/graphics/jpeg.

  11. R. Kam and P. Wong, “Customized JPEG Compression for Grayscale Printing,”. Data Comp. Conf. DCC-94, IEEE, pp. 156–165, 1994.

    Google Scholar 

  12. A. Lewis and G. Knowles, “Image Compression Using the 2-D Wavelet Transform,” IEEE Trans. Image Proc., pp. 244–250, April. 1992.

    Google Scholar 

  13. D. LeGall and A. Tabatabai, “Subband Coding of Digital Images Using Symmetric Short Kernel Filters and Arithmetic Coding Techniques,” Proc. ICASSP, IEEE, pp. 761–765, 1988.

    Google Scholar 

  14. N. Lohscheller, “A Subjectively Adapted Image Communication System,” IEEE Trans. Comm., COM-32, pp. 1316–1322, 1984.

    Google Scholar 

  15. E. Majani, “Biorthogonal Wavelets for Image Compression,” Proc. SPIE, VCIP-94, 1994.

    Google Scholar 

  16. J. Mannos and D. Sakrison, “The Effect of a Visual Fidelity Criterion on the Encoding of Images,” IEEE Trans. Info. Thry, IT-20, pp. 525–536, 1974.

    Google Scholar 

  17. K. Ngan, K. Leong, and H. Singh, “Adaptive Cosine Transform Coding of Images in Perceptual Domain,” IEEE Trans. Acc. Sp. Sig. Proc., ASSP-37, pp. 1743–1750, 1989.

    Google Scholar 

  18. N. Nill, “A Visual Model Weighted Cosine Transform for Image Compression and Quality Assessment,” IEEE Trans. Comm., pp. 551–557, June, 1985.

    Google Scholar 

  19. A. Zandi et al, “CREW: Compression with Reversible Embedded Wavelets,” Proc. Data Compression Conference 95, IEEE, March, 1995.

    Google Scholar 

  20. A. Said and W. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. Circuits and Systems for Video Technology, vol. 6, pp. 243–250, June 1996.

    Google Scholar 

  21. E. Selwyn and J. Tearle, em Proc. Phys. Soc., Vo. 58, no. 33, 1946.

    Google Scholar 

  22. J. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Trans. Signal Proc., pp. 3445–3462, December, 1993.

    Google Scholar 

  23. J. Shapiro, “Smart Compression Using the Embedded Zerotree Wavelet (EZW) Algorithm,” Proc. Asilomar Conf. Sig., Syst. and Comp., IEEE, pp. 486–490, 1993.

    Google Scholar 

  24. S. Mallat and F. Falcon, “Understanding Image Transform Codes,” IEEE Trans. Image Proc., submitted, 1997.

    Google Scholar 

  25. S. LoPresto, K. Ramchandran, and M. Orchard, “Image Coding Based on Mixture Modelling of Wavelet Coefficients and a Fast Estimation-Quantization Framework,” DCC97, Proc. Data Comp. Conf., Snowbird, UT, pp. 221–230, March, 1997.

    Google Scholar 

  26. Y. Shoham and A. Gersho, “Efficient Bit Allocation for an Arbitrary Set of Quantizers,” IEEE Trans. ASSP, vol. 36, pp. 1445–1453, 1988.

    Google Scholar 

  27. A. Docef et al, “Multiplication-Free Subband Coding of Color Images,” Proc. Data Compression Conference 95, IEEE, pp. 352–361, March, 1995.

    Google Scholar 

  28. W. Chung et al, “A New Approach to Scalable Video Coding,” Proc. Data Compression Conference 95, IEEE, pp. 381–390, March, 1995.

    Google Scholar 

  29. M. Smith, “ATR and Compression,” Workshop on Clipping Service, MITRE Corporation, July, 1995.

    Google Scholar 

  30. G. Strang and T. Nguyen, Wavelets and Filter Banks, Cambridge-Wellesley Press, 1996.

    Google Scholar 

  31. P. Topiwala et al, Fundamentals of Wavelets and Applications, IEEE Educa-tional Video, September, 1995.

    Google Scholar 

  32. P. Topiwala et al, “Region of Interest Compression Using Pyramidal Coding Schemes,” Proc. SPIE-San Diego, Mathematical Imaging, July, 1995.

    Google Scholar 

  33. K. Tzou, T. Hsing and J. Dunham, “Applications of Physiological Human Visual System Model to Image Compression,” Proc. SPIE 504, pp. 419–424, 1984.

    Google Scholar 

  34. J. Villasenor et al, “Filter Evaluation and Selection in Wavelet Image Compression,” Proc. Data Compression Conference, IEEE, pp. 351–360, March, 1994.

    Google Scholar 

  35. J. Villasenor et al, “Wavelet Filter Evaluation for Image Compression,” IEEE Trans. Image Proc., August, 1995.

    Google Scholar 

  36. M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall, 1995.

    Google Scholar 

  37. A. Watson et al, “Visibility of Wavelet Quantization Noise,” NASA Ames Research Center preprint 1996. http://www.vision.arc.nasa.gov/personnel/watson/watson.html

  38. I. Witten et al, “Arithmetic Coding for Data Compression,” Comm. ACM, IEEE, pp. 520–541, June, 1987.

    Google Scholar 

  39. Z. Xiong et al, “Joint Optimization of Scalar and Tree-Structured Quantization of Wavelet Image Decompositions,” Proc. Asilomar Conf. Sig., Syst., and Comp., IEEE, November, 1993.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Topiwala, P.N. (2002). Wavelet Still Image Coding: A Baseline MSE and HVS Approach. In: Topiwala, P.N. (eds) Wavelet Image and Video Compression. The International Series in Engineering and Computer Science, vol 450. Springer, Boston, MA. https://doi.org/10.1007/0-306-47043-8_6

Download citation

  • DOI: https://doi.org/10.1007/0-306-47043-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-8182-2

  • Online ISBN: 978-0-306-47043-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics