Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 18))

Abstract

A new general algorithm for computing distance transforms of digital images is presented. The algorithm consists of two phases. Both phases consist of two scans, a forward and a backward scan. The first phase scans the image column-wise, while the second phase scans the image row-wise. Since the computation per row (column) is independent of the computation of other rows (columns), the algorithm can be easily parallelized on shared memory computers. The algorithm can be used for the computation of the exact Euclidean, Manhattan (L 1 norm), and chessboard distance (L norm) transforms.

A. Meijster works at the Computing Centre of the University of Groningen.

J.B.T.M. Roerdink and W.H. Hesselink work at the Institute for Mathematics and Computing Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision, Graphics, and Image Processing, 27:321–345, 1984.

    Google Scholar 

  2. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34:344–371, 1986.

    Google Scholar 

  3. P. Danielsson. Euclidean distance mapping. Comput. Graphics Image Process., 14:227–248, 1980.

    Article  Google Scholar 

  4. W._H. Hesselink, A. Meijster, and J. B. T. M. Roerdink. An exact Euclidean distance transform in linear time. Technical Report IWI 99-9-04, Institute for Mathematics and Computing Science, University of Groningen, the Netherlands, Apr. 1999.

    Google Scholar 

  5. M. Kolountzakis and K. Kutulakos. Fast computation of the Euclidean distance maps for binary images. Information Processing Letters, 43:181–184, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Pavel and A. Akl. Efficient algorithms for the Euclidean distance transform. Parallel Processing Letters, 5:205–212, 1995.

    Article  MathSciNet  Google Scholar 

  7. A. Rosenfeld and J. Pfaltz. Distance functions on digital pictures. Pattern Recognition, 1:33–61, 1968.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H. (2002). A General Algorithm for Computing Distance Transforms in Linear Time. In: Goutsias, J., Vincent, L., Bloomberg, D.S. (eds) Mathematical Morphology and its Applications to Image and Signal Processing. Computational Imaging and Vision, vol 18. Springer, Boston, MA. https://doi.org/10.1007/0-306-47025-X_36

Download citation

  • DOI: https://doi.org/10.1007/0-306-47025-X_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-7862-4

  • Online ISBN: 978-0-306-47025-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics