Skip to main content

Communication Channels and Models

  • Chapter
Simulation of Communication Systems
  • 983 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. C. Jakes (ed.), Microwave Mobile Communications, Wiley, New York (1974).

    Google Scholar 

  2. J. D. Parsons, The Mobile Radio Propagation Channel, Halsted Press, New York, (1992).

    Google Scholar 

  3. R. Steele (ed.), Mobile Radio Communications, Pentech Press, London (1994).

    Google Scholar 

  4. J. G. Proakis, Digital Communications, McGraw-Hill, New York (1993).

    Google Scholar 

  5. B. Sklar, Rayleigh fading channels in mobile radio communications, Parts I and II, IEEE Commun. Mag. 35(9), 136–155 (1997).

    Google Scholar 

  6. W. Y. C. Lee, Mobile Cellular Communications, McGraw-Hill, New York (1989).

    Google Scholar 

  7. T. S. Rappaport, Wireless Communications, Prentice-Hall, Upper Saddle River, New Jersey (1996).

    Google Scholar 

  8. V Erceg et al., Comparisons of a computer-based propagation prediction tool with experimental data collected in urban microcellular environments, IEEE J. Select. Areas Commun. 15(4), 677–684 (1997).

    Article  Google Scholar 

  9. S. C. Kim et al., Radio propagation measurement and prediction using three-dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz, IEEE Trans. Vehic. Technol. VT-43(3), 931–946 (1999).

    Google Scholar 

  10. M. Hata Empirical formulae for propagation loss in land mobile radio services, IEEE Trans. Vehic. Technol. VT-29(3), 317–325 (1980).

    MathSciNet  Google Scholar 

  11. Y. Okumura, E. Ohmori, and K. Fukuda, Field strength and its variability in VHF and UHF land mobile radio service, Rev. Elec. Commun. Lab. 16(9, 10), 825–873 (1968).

    Google Scholar 

  12. S. Y. Seidel et al., Path loss, scattering and multipath delay statistics in four European cities for digital cellular and microcellular radiotelephone, IEEE Trans. Vehic. Technol. VT-40(4), 721–730 (1991).

    MathSciNet  Google Scholar 

  13. P. A. Bello, Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst. CS-11(4), 360–393 1963.

    Google Scholar 

  14. B. Glance and L. J. Greenstein, Frequency-selective fading effects in digital mobile radio with diversity combining, IEEE Trans. Commun. COM-31(9), 625–635 (1983).

    Google Scholar 

  15. R. H. Clarice, A statistical theory of mobile radio reception, Bell Syst. Tech. J. 47(6), 957–1000 (1968).

    Google Scholar 

  16. F. Amoroso, Use of DS/SS signaling to mitigate Rayleigh fading in a dense scatter environment, IEEE Pers. Commun. 3(2), 52–61 (1996).

    Article  MathSciNet  Google Scholar 

  17. D. C. Cox, Delay-Doppler characteristics of multipath propagation at 910 MHz in a suburban mobile radio environment, IEEE Trans. Ant. Prop. AP-20(9), 625–635 (1972).

    Google Scholar 

  18. H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 3, Wiley, New York (1968).

    MATH  Google Scholar 

  19. S. A. Fechtel, A novel approach to modeling and efficient simulation of frequency-selective fading radio channels, IEEE J. Select. Areas Commun. 11(3), 422–431 (1993).

    Article  Google Scholar 

  20. M. B. Priestly, Spectral Analysis and Time Series, Vol. 2, Academic Press, London (1981).

    Google Scholar 

  21. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd ed., McGraw-Hill, New York (1991).

    Google Scholar 

  22. B. N. Datta, Numerical Linear Algebra and Applications, Brooks Cole, Pacific Grove, California (1995).

    Google Scholar 

  23. H. Bateman, Table of Integral Transforms, Vol. I, McGraw-Hill, New York (1954).

    Google Scholar 

  24. T. S. Rappaport, Characterization of UHF multipath radio channels in factory buildings, IEEE Trans. Ant. Prop. 37(8), 1058–1069 (1989).

    Article  Google Scholar 

  25. T. S. Rappaport, S. Y. Seidel, and K. Takamizawa, Statistical channel impulse response models for factory and open plan building radio communication system design, IEEE Trans. Commun. 39(5), 794–807 (1991).

    Article  Google Scholar 

  26. R. Ganesh and K. Pahlavan, On the modeling of fading multipath indoor radio channels, in Proceedings of Global Telecommunications Conference pp. 1346–1350 (1989).

    Google Scholar 

  27. R. Ganesh and K. Pahlavan, Statistical modelling and computer simulation of Indoor radio channel, Proc. IEE 138(3), 153–161 (1991).

    Google Scholar 

  28. J. B. Anderson, T. S. Rappaport, and S. Yoshida, Propagation measurements and models for wireless communications channels, IEEE Commun. Mag. 42–49 (1995).

    Google Scholar 

  29. A. A. M. Saleh and R. A. Valenzuela, A statistical model for indoor multipath propagation, IEEEJ. Select. Areas Commun. SAC-54(2), 128–137 (1987).

    Google Scholar 

  30. S. C. Kim, H. L. Bertoni, and M. Stem, Pulse propagation characteristics at 2.4 GHz inside buildings, IEEE Trans. Vehic. Technol 45(3), 579–592 (1996).

    Google Scholar 

  31. S. F. Fortune et al., Wise design of indoor wireless systems: Practical computation and optimization, IEEE Comput. Sci. Eng. 1995(Spring), 58–68.

    Google Scholar 

  32. W. D. Rummler, A new selective fading model: Application to propagation data, Bell Syst. Tech. J. 58(5), 1037–1071 (1979).

    MATH  Google Scholar 

  33. P. Balaban, Statistical models for amplitude and delay of selective fading, ATT Tech. J. 64(10), 2525–2250 (1985).

    Google Scholar 

  34. G. H. Millman, Atmospheric and Extraterrestrial Effects on Radio Wave Propagation, General Electric Co., Technical Information Series, No. R61EMH29 (June 1961).

    Google Scholar 

  35. W._L. Flock, Propagation Effects on Satellite Systems at Frequencies below 10 GHz, NASA Reference Publication 1108 (December 1983).

    Google Scholar 

  36. L. J. Ippolito, R. D. Kaul, and R. G. Wallace, Propagation Effects Handbook for Satellite Systems Design, NASA Reference Publication 1082(03), (June, 1983).

    Google Scholar 

  37. P. Lo, J. Haddon, H. O’Neill, and E. Vilar, Computation of rain induced scintillations on satellite down-links at microwave frequencies, IEE Conference on Communications, Publication 219.

    Google Scholar 

  38. H. J. Liebe, Modeling attenuation and phase of radio waves in air at frequencies below 1000 GHz, Radio Sci. 16(6), 1183–1199 (1981).

    Google Scholar 

  39. K. S. Shanmugan, M. S. McKinley, V S. Frost, E. M. Friedman, and J. C. Holtzman, Wideband digital transmission through the atmosphere at EHF frequencies: Effects of refractive dispersion, Proc. Globecom Conference, Atlanta, Georgia (1984).

    Google Scholar 

  40. R. K. Crane, Prediction of attenuation by rain, IEEE Trans. Commun. COM-28, 1717–1733 (1980).

    Google Scholar 

  41. L. J. Ippolito, Jr., Radiowave Propagation in Satellite Communications, Van Nostrand Reinhold, New York (1986).

    Google Scholar 

  42. D. M. Jansky and M. C. Jeruchim, Communication Satellites in the Geostationary Orbit, 2nd ed., Artech House, Norwood, Massachusetts (1987).

    Google Scholar 

  43. G. H. Millman and M. C. Arabadjis, Tropospheric and Ionospheric Phase Perturbations and Doppler Frequency Shift Effects, General Electric Co., Technical Information Series No. R84EMH003 (August 1984).

    Google Scholar 

  44. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New York (1965).

    Google Scholar 

  45. J. C. Daly, (ed.), Fiber Optics, CRC Press, Boca Raton, Florida (1984).

    Google Scholar 

  46. G. Keiser, Optical Fiber Communications, McGraw-Hill, New York (1983).

    Google Scholar 

  47. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers. Clouds, Water, and the Atmosphere, Plenum Press, New York (1988).

    Google Scholar 

  48. D. G. Duff, Computer-aided design of digital lightwave systems, IEEE J. Select. Areas Commun. SAC-2(1), 171–185 (1984).

    Google Scholar 

  49. P. K. Cheo, Fiber Optics Devices and Systems, Prentice-Hall, Englewood Cliffs, New Jersey (1985).

    Google Scholar 

  50. J. K. Townsend, Computer simulation of digital lightwave communication links, Ph. D. thesis, University of Kansas, Lawrence, Kansas (June 1988).

    Google Scholar 

  51. J. Gimlett and N. Cheung, Dispersion penalty analysis for LED/single-mode fiber transmission systems, IEEE J. Lightwave Technol. LT-4, 1381–1392 (1986).

    Google Scholar 

  52. A. Elrefaie, R. E. Wagner, D. A. Atlas, and D. G. Daut, Chromatic dispersion limitations in coherent optical fiber transmission systems, IEE Electron. Lett. 23(14), 756–758 (1987).

    Google Scholar 

  53. L. N. Kanal and A. R. K. Sastry, Markov models for channels with memory and their application to error control, Proc. IEEE, 66, 724–744, (1978).

    Article  MathSciNet  Google Scholar 

  54. F. Swarts and H. C. Ferreira, Markov Characterization of digital fading mobile channels, IEEE Trans. on Vehicular Tech., 43, 977–985, (1994).

    Google Scholar 

  55. C. Chao and Y. Yao, HMM models for the bust error characteristics of Viterbi decoding, Proceedings of ICC’93, 751–756, (1993).

    Google Scholar 

  56. L. R. Rabiner and B. H. Huang, An introduction to hidden Markov models, IEEE ASSP Mag. 1986 (January), 4–16.

    Google Scholar 

  57. S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, An introduction to the theory and application of Markov processes to automatic speech recognition, Bell Syst. Tech. J. 62, 1035–1074 (1983).

    MathSciNet  MATH  Google Scholar 

  58. E. N. Gilbert, Capacity of a burst noise channel, Bell Syst. Tech. J. 39, 1253–1265 (1960).

    Google Scholar 

  59. B. D. Fritchman, A binary channel characterization using partitioned Markov chains, IEE Trans. Inform. Theory IT-13, 221–227 (1967).

    Google Scholar 

  60. L. E. Baum. et. al., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Annals of Math. Statistics, 11, 164–171, (1970).

    MathSciNet  Google Scholar 

  61. W. Turin, Digital Transmission Systems: Performance Analysis and Modeling, McGraw-Hill, New York (1998).

    Google Scholar 

  62. W. Turin and M. M. Sondhi, Modeling of error sources in digital transmission systems, IEEE J. Sect. Areas Commun. 11, 340–347 (1993).

    Google Scholar 

  63. S. Sivaprakasam and K. Sam Shanmugan, A Markov model for burst error channels, IEEE Trans. Commun. 43, 1347–1355 (1995).

    Article  MATH  Google Scholar 

  64. ETSI, GSM Recommendation 05.05, Radio Transmission and Reception, Annex 3, 13–16 (November 1988).

    Google Scholar 

  65. ANSI J-STD-008, Personal Station-Base Station Compatibility Requirements for 1.8 to 2.0 GHz Code Division Multiple Access (CDMA) Personal Communications Systems (March 1995).

    Google Scholar 

  66. Recommendation ITU-R M.1225, Guidelines for Evaluation of Radio Transmission Technologies for IMT-2000, Annex 2 (1997).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Communication Channels and Models. In: Simulation of Communication Systems. Information Technology: Transmission, Processing, and Storage. Springer, Boston, MA. https://doi.org/10.1007/0-306-46971-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-46971-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46267-2

  • Online ISBN: 978-0-306-46971-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics