Skip to main content

Estimation of Parameters in Simulation

  • Chapter
  • 929 Accesses

Summary

Many properties of a signal are of interest, either as potential diagnostics or directly as the performance measure(s) of interest. The latter are discussed in the next chapter. In this chapter we looked at a number of waveform properties that may be useful to know for various reasons, such as the average level, average power, amplitude probability distribution, power spectral density, and delay or phase rotation. We described the procedures whereby the property of interest can be estimated. By and large, these procedures are straightforwardly implemented in simulation. Where applicable, we also developed the statistical properties of the estimators so as to provide the simulation user with the tradeoff between estimator reliability and computer run time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. A. Gardner, Introduction to Random Processes, Macmillan, New York (1986).

    MATH  Google Scholar 

  2. W. A. Gardner, Rice’s representation for cyclostationary processes, IEEE Trans. Commun. COM-35(1), 74–78 (1987).

    Google Scholar 

  3. W. A. Gardner, Common pitfalls in the application of stationary process theory to time-sampled and modulated signals, IEEE Trans. Commun. COM-35(5), 529–534 (1987).

    Google Scholar 

  4. A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill, New York (1950).

    MATH  Google Scholar 

  5. M. Fisz, Probability Theory and Mathematical Statistics, 3rd ed., Wiley, New York (1963).

    MATH  Google Scholar 

  6. P. L. Meyer, Introductory Probability and Statistical Applications, 2nd ed., Addison-Wesley, Reading, Massachusetts (1970).

    Google Scholar 

  7. V K. Rohatgi, Statistical Inference, Wiley, New York (1984).

    MATH  Google Scholar 

  8. H. Cramer, Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey (1946).

    MATH  Google Scholar 

  9. P. Bickel and K. Doksum, Mathematical Statistics, Holden-Day, San Francisco (1977).

    MATH  Google Scholar 

  10. R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, 4th ed., Macmillan, New York (1978).

    Google Scholar 

  11. K. S. Shanmugan and A. M. Breipohl, Random Signals: Detection, Estimation and Data Analysis, Wiley, New York, pp. 18–20 (1988).

    Google Scholar 

  12. E. Parzen, On estimation of a probability density and its mode, Ann. Math. Stat. 33, 1065–1976 (1962).

    MATH  MathSciNet  Google Scholar 

  13. R. Tapia and J. Thompson, Nonparametric Probability Density Estimation, Johns Hopkins University Press, Baltimore, Maryland (1978).

    MATH  Google Scholar 

  14. S. M. Ross, Stochastic Processes, Wiley, New York (1983).

    MATH  Google Scholar 

  15. F. Amoroso, The bandwidth of digital data signals, IEEE Commun. Mag. 18(6), 13–24 (1980).

    Article  Google Scholar 

  16. D. Slepian, On bandwidth, Proc. IEEE 64(3), 292–300 (1976).

    MathSciNet  Google Scholar 

  17. D. Middleton, An Introduction to Statistical Communication Theory, McGraw-Hill, New York (1960).

    Google Scholar 

  18. H. E. Rowe, Signal and Noise in Communication Systems, Van Nostrand, New York (1965).

    Google Scholar 

  19. N. Blachman, The power spectrum of a digital signal, IEEE Trans. Commun. COM-22(3), 349–350 (1974).

    MathSciNet  Google Scholar 

  20. V. K. Prabhu and H. E. Rowe, Spectra of digital phase modulation by matrix methods, Bell Syst. Tech. J. 53(5), 899–935 (1974).

    MathSciNet  Google Scholar 

  21. I. Korn, Digital Communications, Van Nostrand Reinhold, New York (1985).

    MATH  Google Scholar 

  22. J. B. Andersen, T. Aulin, and C. E. Sundberg, Digital Phase Modulation, Plenum Press, New York (1986).

    Google Scholar 

  23. O. Shimbo, Transmission Analysis in Communications, Vol. I, Computer Science Press, Rockville, Maryland (1988).

    Google Scholar 

  24. G. Robinson, O. Shimbo, and R. Fang, PSK signal power spectrum spread produced by memoryless nonlinear TWTs, COMSATTech. Rev. 3(2), 227–256 (1973).

    Google Scholar 

  25. C. Devieux, Analysis of PSK signal power spectrum spread with a Markov chain model, COMSATTech. Rev. 5(2), 225–252 (1975).

    Google Scholar 

  26. S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission Theory, Prentice-Hall, Englewood Cliffs, New Jersey (1987).

    MATH  Google Scholar 

  27. F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform, Proc. IEEE 66(1), 51–83 (1978).

    Google Scholar 

  28. S. M. Kay and S. L. Marple, Jr., Spectrum analysis—A modern perspective, Proc, IEEE 69(11), 1380–1419 (1981).

    Article  Google Scholar 

  29. Special Issue on Spectral Estimation, Proc. IEEE 70(9) (1982).

    Google Scholar 

  30. N. Mohanty, Random Signals, Estimation and Identification, Van Nostrand Reinhold, New York (1986).

    Google Scholar 

  31. S. L. Maple, Jr., Digital Spectral Analysis with Applications, Prentice-Hall, Englewood Clifts, New Jersey (1987).

    Google Scholar 

  32. W. B. Davenport and W. L. Root, An Introduction of the Theory of Random Signals and Noise, McGraw-Hill, New York (1958).

    MATH  Google Scholar 

  33. P. D. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust. AU-15, 70–73 (1967).

    MathSciNet  Google Scholar 

  34. W. C. Lindsey and M. K. Simon, Telecommunication Systems Engineering, Prentice-Hall, Englewood Cliffs, New Jersey (1973).

    Google Scholar 

  35. U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital Receivers, Plenum Press, New York (1997).

    Google Scholar 

  36. P. Wintz and E. J. Luecke, Performance of optimum and suboptimum synchronizers, IEEE Trans. Commun. Technol. COM-17(3), 380–389 (1969).

    Google Scholar 

  37. J. J. Spilker, Jr., Digital Communications by Satellite, Prentice-Hall, Englewood Cliffs, New Jersey (1977).

    Google Scholar 

  38. I. Richer, A block phase estimator for offset-QPSK signaling. In Proc. National Telemetering Conference, New Orleans, Louisiana (1975).

    Google Scholar 

  39. M. C. Jeruchim, Some modeling aspects in the simulation of digital links. In Proc. International Telemetering Conference, Los Angeles, California (1978).

    Google Scholar 

  40. K. Feher et al., Telecommunications Measurements, Analysis and Instrumentation, Prentice-Hall, Englewood Cliffs, New Jersey (1987).

    Google Scholar 

  41. Bell Telephone Laboratories, Transmission Systems for Communications, 5th ed. (1982).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). Estimation of Parameters in Simulation. In: Simulation of Communication Systems. Information Technology: Transmission, Processing, and Storage. Springer, Boston, MA. https://doi.org/10.1007/0-306-46971-5_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-46971-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46267-2

  • Online ISBN: 978-0-306-46971-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics