Skip to main content

Linear Viscoelasticity of Concentrated Emulsions

  • Conference paper
Mechanics for a New Mellennium

Abstract

The linear viscoelastic response of an ordered dense emulsion is explored by numerical simulation. At concentrations below maximum packing, the stress relaxation is dominated by a single time scale associated with lubrication, which diverges at maximum packing. For concentrations above maximum packing, the stress relaxation is dominated by fast time scales of the order of the drop relaxation time. A slow time scale appears but does not dominate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Princen, H. M. 1985. Rheology of foams and highly concentrated emulsions:II—Experimental study of the yield stress and wall effects for concentrated oil-in-water emulsions. Journal of Colloid and Interface Science 105, 150–171.

    Article  Google Scholar 

  2. Princen, H. M., and A.D. Kiss. 1986. Rheology of foams and highly concentrated emulsions: III—Static shear modulus. Journal of Colloid and Interface Science 112, 427–437.

    Article  Google Scholar 

  3. Princen, H. M., and A. D. Kiss. 1989. Rheology of foams and highly concentrated emulsions: IV—An experimental study of the shear viscosity and yield stress of concentrated emulsions. Journal of Colloid and Interface Science 128, 176–189.

    Article  Google Scholar 

  4. Mason, T. G., J. Bibette, and D. A. Weitz. 1996. Yielding and flow of monodisperse emulsions. Journal of Colloid and Interface Science 179, 439–448.

    Article  Google Scholar 

  5. Mason, T. G., M. D. Lacasse, G. S. Grest, D. Levine, J. Bibette, and D. A Weitz. 1997. Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Physical Review E 56, 3150–3166.

    Article  ADS  Google Scholar 

  6. Tewari, S., D. Schiemann, D. J. Durian, C. M. Knobler, S. A. Langer, and A. J. Liu. 1999. Statistics of shear-induced rearrangements in a two-dimensional model foam. Physical Review E 60, 4385–4396.

    Article  ADS  Google Scholar 

  7. Princen, H. M. 1979. Highly concentrated emulsions. Journal of Colloid and Interface Science bf 71, 55–66.

    Google Scholar 

  8. Princen, H. M. 1983. Rheology of foams and highly concentrated emulsions. Journal of Colloid and Interface Science 91, 160–175.

    Article  Google Scholar 

  9. Buzza, D. M. A., and M. E. Cates. 1994. Uniaxial elastic modulus of concentrated emulsions. Langmuir 10, 4503–4508.

    Article  Google Scholar 

  10. Reinelt, D. A., and A. M. Kraynik. 1996. Simple shearing flow of a dry Kelvin soap foam. Journal of Fluid Mechanics 311, 327–342.

    Article  ADS  MATH  Google Scholar 

  11. Weaire, D., T. L. Fu, and Kermode. 1986. On the shear elastic constant of a two-dimensional froth. Philosophical Magazine B 54, L39–L43.

    Article  Google Scholar 

  12. Lacasse, M. D., G. S. Grest, D. Levine, T. G. Mason, and D. A. Weitz. 1996. Model for the elasticity of compressed emulsions. Physical Review Letters 76, 3448–3451.

    Article  ADS  Google Scholar 

  13. Okuzono, T., and K. Kawasaki. 1993. Rheology of random foams. Journal of Rheology 37, 571–586.

    Article  ADS  Google Scholar 

  14. Durian, D. J. 1995. Foam mechanics at the bubble scale. Physical Review Letters 75, 4780–4783.

    Article  ADS  Google Scholar 

  15. Mysels, K. J., K. Shinoda, and S. Frankel. 1959. Soap Films: A Study of Their Thinning and a Bibliography. Tarrytown, N.Y.: Pergamon Press.

    Google Scholar 

  16. Reinelt, D. A., and A. M. Kraynik. 1990. On the shearing flow of foams and concentrated emulsions. Journal of Fluid Mechanics 215, 1235–1253.

    Article  MathSciNet  Google Scholar 

  17. Durian, D. J. 1997. Bubble-scale model of foam mechanics: Melting, nonlinear ehavior, and avalanches. Physical Review E 55, 1739–1751.

    Article  ADS  Google Scholar 

  18. Frisch, U., B. Hasslacher, and Y. Pomeau. 1986. Lattice-gas automata for the navier-Stokes equation. Physical Review Letters 56, 1505–1508.

    Article  ADS  Google Scholar 

  19. Pozrikidis, C. 1992. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Nemer, M., Blawzdziewicz, J., Loewenberg, M. (2001). Linear Viscoelasticity of Concentrated Emulsions. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics