Skip to main content

Metallic Foams: Structure, Properties, and Applications

  • Conference paper
Mechanics for a New Mellennium

Abstract

Recently, a number of novel processes have been developed for making metallic foams. Their combination of properties make them attractive in a variety of engineering applications. Their low weight and ability to be formed into complex shapes make them attractive for use in structural sandwich panels. Their capacity to undergo large deformations at almost constant load can be exploited in energy-absorption devices. And the high thermal conductivity combined with the connected porosity in open-cell metallic foams makes them attractive for heat sinks. Here, we summarize the current understanding of the uniaxial behavior of metallic foams and relate their properties to micromechanical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashby, M. F., A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley (eds.). 2000. Metal Foams: A Design Guide. London: Butterworth-Heinemann.

    Google Scholar 

  2. Andrews, E. W., W. Sanders, and L. J. Gibson. 1999. Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering A 270(2), 113–124.

    Article  Google Scholar 

  3. Simone, A. E., and Gibson, L. J. 1998. Aluminum foams produced by liquid-state processes. Ada Materialia 46(9), 3109–3123.

    Article  Google Scholar 

  4. Sugimura, Y., J. Meyer, M. Y. He, H. Bart-Smith, J. Grenestedt, and A. G. Evans. 1997. On the mechanical performance of closed cell Al alloy foams. Acta Materialia 45(12), 5245–5259.

    Article  Google Scholar 

  5. Gibson, L. J., and M. F. Ashby. 1982. On the mechanical performance of closed cell Al alloy foams. Proceedings of the Royal Society A 382, 43–59.

    Article  Google Scholar 

  6. Gibson, L. J., and M. F. Ashby. 1997. Cellular Solids: Structure and Properties, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  7. Ko, W. L. 1965. Deformation of foamed elastomers. Journal of Cellular Plastics 1, 45–50.

    Article  Google Scholar 

  8. Kraynik, A. M., M. K. Neilsen, D. A. Reinelt, and W. E. Warren. 1999. Foam micromechanics: Structure and rheology of foams, emulsions and cellular solids. In Foams and Emulsions (J. F. Sadoc and N. Rivier, eds.) Dordrecht: Kluwer Academic Publishers, 259–286.

    Google Scholar 

  9. Menges, G., and F. Knipschild. 1975. Estimation of mechanical properties for rigid polyurethane foams. Polymer Engineering and Science 15(8), 623–627.

    Article  Google Scholar 

  10. Patel, M. R., and I. Finnie. 1970. Structural features and mechanical properties of rigid cellular plastics. Journal of Materials 5(4), 909–932.

    Google Scholar 

  11. Warren, W. E., and A. M. Kraynik. 1988. Linear elastic properties of open-cell foams. Journal of Applied Mechanics 55(2), 341–346.

    Article  Google Scholar 

  12. Zhu, H. X., J. F. Knott, and N. J. Mills. 1997. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. Journal of the Mechanics and Physics of Solids 45(3), 319–343.

    Article  ADS  Google Scholar 

  13. Barma, P., M. B. Rhodes, and R. Salover. 1978. Mechanical properties of particulate-filled polyurethane foams. Journal of Applied Physics 49(10), 4985–4991.

    Article  ADS  Google Scholar 

  14. Chan, R., and M. Nakamura. 1969. Mechanical properties of plastic foams. Journal of Cellular Plastics 5(2), 112–118.

    Article  Google Scholar 

  15. Christensen, R. M. 1986. Mechanics of low density materials. Journal of the Mechanics and Physics of Solids 34(6), 563–578.

    Article  ADS  Google Scholar 

  16. Gent, A. N., and A. G. Thomas. 1959. Deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113.

    Article  Google Scholar 

  17. Matonis, V. A. 1964. Elastic behavior of low density rigid foams in structural applications. Society of Plastic Engineers Journal 20(9), 1024–1030.

    Google Scholar 

  18. Mills, N. J., and H. X. Zhu. 1999. High strain compression of closed-cell polymer foams. Journal of the Mechanics and Physics of Solids 47(3), 669–695.

    Article  MATH  ADS  Google Scholar 

  19. Zhu, H. X., N. J. Mills, and J. F. Knott. 1997. Analysis of the high strain compression of open-cell foams. Journal of the Mechanics and Physics of Solids 45(11–12), 1875–1904.

    Article  MATH  ADS  Google Scholar 

  20. Warren, W. E., and A. M. Kraynik. 1997. Linear elastic behavior of a low density Kelvin foam with open cells. Journal of Applied Mechanics 64(4), 787–794.

    Article  MATH  Google Scholar 

  21. Simone, A. E., and L. J. Gibson. 1998. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia 46(6), 2139–2150.

    Article  Google Scholar 

  22. Deshpande, V. S., and N. A. Fleck. 2000. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids 48(6), 1253–1283.

    Article  MATH  ADS  Google Scholar 

  23. Bart-Smith, H., A.-F. Bastawros, D. R. Mumm, A. G. Evans, D. J. Sypeck, and H. N. G. Wadley. 1998. Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Acta Materialia 46(10), 3583–3592.

    Article  Google Scholar 

  24. Andrews, E. W., G. Gioux, P. Onck, and L. J. Gibson. 2000. Size effects in ductile cellular solids—Part II: Experimental results. International Journal of Mechanical Sciences 43, 701–713.

    Article  Google Scholar 

  25. Beals, J. T., and M. S. Thompson. 1997. Density gradient effects on aluminum foam compression behaviour. Journal of Materials Science 32(13), 3595–3600.

    Article  Google Scholar 

  26. Dubbelday, P. S. 1992. Poisson’s ratio of foamed aluminum determined by laser Doppler vibrometry. Journal of the Acoustical Society of America 91(3), 1737–1744.

    Article  ADS  Google Scholar 

  27. Gradinger, R., F. Simancik, and H. P. Degischer. 1997. Determination of mechanical properties of foamed metals. Proceedings of the International Conference on Welding Technology, Materials and Materials Testing, Fracture Mechanics and Quality Management 2. Vienna University of Technology: Chytra Druck and Verlag GmbH, 701–722.

    Google Scholar 

  28. McCullough, K. Y. G., N. A. Fleck, and M. F. Ashby. 1999. Toughness of aluminum alloy foams. Acta Materialia 47(8), 2323–2330.

    Article  Google Scholar 

  29. Weber, M., J. Baumeister, J. Banhart, and H.-D. Kunze. 1994. Selected mechanical and physical properties of metal foams. 1994 Powder Metallurgy World Congress—Vol. 1, Editions de Physique, 585–588.

    Google Scholar 

  30. Dubbelday, P. S., and K. M. Rittenmyer. 1985. Shear modulus determination of foamed aluminium and elastomers. Proceedings of the 1985 IEEE Ultrasonics Symposium 2, 1052–1055.

    Google Scholar 

  31. Banhart, J., J. Baumeister, and M. Weber. 1995. Powder metallurgical technology for the production of metallic foams. Euro Powder Metallurgy’ 95 (Light Alloys), 201–208.

    Google Scholar 

  32. Banhart, J., and J. Baumeister. 1998. Deformation characteristics of metal foams. Journal of Materials Science 33(6), 1431–1440.

    Article  Google Scholar 

  33. Gioux, G., T. M. McCormack, and L. J. Gibson. 2000. Failure of aluminum foams under multiaxial loads. International Journal of Mechanical Sciences 46(6), 1097–1117.

    Article  Google Scholar 

  34. Prakash, O., H. Sang, and J. D. Embury. 1995. Structure and properties of Al-SiC foam Materials Science and Engineering A 199(2), 195–203.

    Article  Google Scholar 

  35. Thornton, P. H., and C. L. Magee. 1975. Deformation characteristics of zinc foam. Metallurgical Transactions A 64(9), 1801–1807.

    Article  ADS  Google Scholar 

  36. Triantafillou, T. C., J. Zhang, T. L. Shercliff, L. J. Gibson, and M. F. Ashby. 1989. Failure surfaces for cellular materials under multiaxial loads. II. Comparison of models with experiment. International Journal of Mechanical Sciences 31(9), 665–678.

    Article  Google Scholar 

  37. von Hagen, H., and W. Bleck. 1998. Compressive, tensile, and shear testing of melt-foamed aluminium. Proceedings of the Materials Research Society (MRS) Symposium 521. Warrendale, Penn.: MRS, 59–64.

    Google Scholar 

  38. Davis, J. R. 1993. Properties of cast aluminum alloys. ASM Specialty Handbook: Aluminum and Aluminum Alloys. Materials Park, Ohio: American Society for Metals.

    Google Scholar 

  39. Grenestedt, J. L. 1998. Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. Journal of the Mechanics and Physics of Solids 46(1), 29–50.

    Article  MATH  ADS  Google Scholar 

  40. Simone, A. E., and L. J. Gibson. 1998. Effects of solid distribution on the stiffness and strength of metallic foams. Acta Materialia 46(6), 2139–2150.

    Article  Google Scholar 

  41. Chen, C., T. J. Lu, and N. A. Fleck. 1999. Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of Solids 47(11), 2235–2272.

    Article  MATH  ADS  Google Scholar 

  42. McCullough, K. Y. G., N. A. Fleck, and M. F. Ashby. 2000. The stress-life fatigue behaviour of aluminium alloy foams. Fatigue and Fracture of Engineering Materials and Structures 23(3), 199–208.

    Article  Google Scholar 

  43. Banhart, J., J. Baumeister, and M. Weber. 1996. Damping properties of aluminium foams. Materials Science and Engineering A 205(1–2), 221–228.

    Article  Google Scholar 

  44. Banhart, J., and J. Baumeister. 1998. Production methods for metallic foams. Proceedings of the Materials Research Society (MRS) Symposium 521. Warrendale, Penn.: MRS, 121–132.

    Google Scholar 

  45. Gibson, L. J. 2000. Mechanic behavior of metallic foams. Annual Review of Materials Science 30, 191–227.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Gibson, L.J. (2001). Metallic Foams: Structure, Properties, and Applications. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics