Skip to main content

Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity

  • Conference paper
Mechanics for a New Mellennium

Abstract

This paper describes a formally second-order accurate version of the immersed boundary method and its application to the computer simulation of blood flow in a three-dimensional model of the human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peskin, C. S. 1972. Flow patterns around heart valves: A digital computer method for solving the equations of motion. Ph.D. thesis, Albert Einstein College of Medicine, 211 pp. (available at http://www.umi.com/hp/Products/DisExpress.html, order number 7230378).

  2. Peskin, C. S., and D. M. McQueen. 1996. Fluid dynamics of the heart and its valves. In Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology (H. G. Othmer, F. R. Adler, M. A. Lewis, and J. C. Dallon, eds.). Englewood Cliffs, N.J.: Prentice-Hall, 309–337.

    Google Scholar 

  3. McQueen, D. M., and C. S. Peskin. 1997. Shared-memory parallel vector implementation of the immersed boundary method for the computation of blood flow in the beating mammalian heart. Journal of Supercomputing 11(3), 213–236.

    Article  Google Scholar 

  4. McQueen, D. M., and C. S. Peskin. 1983. Computer-assisted design of pivoting-disc prosthetic mitral valves. Journal of Thoracic and Cardiovascular Surgery 86, 126–135.

    Google Scholar 

  5. McQueen, D. M., and C. S. Peskin. 1985. Computer-assisted design of butterfly bileaflet valves for the mitral position. Scandinavian Journal of Thoracic and Cardiovascular Surgery 19, 139–148.

    Google Scholar 

  6. McQueen, D. M., and C. S. Peskin. June 25, 1991. Curved butterfly bileaflet prosthetic cardiac valve. U.S. patent number 5,026,391.

    Google Scholar 

  7. Fogelson, A. L. 1984. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. Journal of Computational Physics 56, 111–134.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Fauci, L. J., and C. S. Peskin. 1988. A computational model of aquatic animal locomotion. Journal of Computational Physics 77, 85–108.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Fauci, L. J., and A. L. Fogelson. 1993. Truncated Newton methods and the modeling of complex immersed elastic structures. Communications in Pure and Applied Mathematics 46, 787–818.

    Article  MathSciNet  Google Scholar 

  10. Beyer, R. P. 1992. A computational model of the cochlea using the immersed boundary method. Journal of Computational Physics 98, 145–162.

    Article  MATH  ADS  Google Scholar 

  11. Fauci, L. J., and A. McDonald. 1995. Sperm motility in the presence of boundaries. Bulletin of Mathematical Biology 57, 679–699.

    MATH  Google Scholar 

  12. Givelberg, E. 1997. Modeling elastic shells immersed in fluid. Ph.D. thesis, Mathematics, New York University (available at http://www.umi.com/hp/Products/DisExpress.html, order number 9808292).

  13. Eggleton, C. D., and A. S. Popel. 1998. Large deformation of red blood cell ghosts in a simple shear flow. Physics of Fluids 10, 1834–1845.

    Article  ADS  Google Scholar 

  14. Arthurs, K. M., L. C. Moore, C. S. Peskin, E. B. Pitman, and H. E. Layton. 1998. Modeling arteriolar flow and mass transport using the immersed boundary method. Journal of Computational Physics 147, 402–440.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bottino, D. C. 1998. Modeling viscoelastic networks and cell deformation in the context of the immersed boundary method. Journal of Computational Physics 147, 86–113.

    Article  MATH  ADS  Google Scholar 

  16. Stockie, J. M., and S. I. Green. 1998. Simulating the motion of flexible pulp fibres using the immersed boundary method. Journal of Computational Physics 147, 147–165.

    Article  MATH  ADS  Google Scholar 

  17. Grunbaum, D., D. Eyre, and A. Fogelson. 1998. Functional geometry of ciliated tentacular arrays in active suspension feeders. Journal of Experimental Biology 201, 2575–2589.

    Google Scholar 

  18. Dillon, R., and L. J. Fauci. 2000. A microscale model of bacterial and biofilm dynamics in porous media. Biotechnology and Bioengineering 68, 536–547.

    Article  Google Scholar 

  19. Lai, M.-C. 1998. Simulations of the flow past an array of circular cylinders as a test of the immersed boundary method. Ph.D. thesis, Mathematics, New York University, 80 pp. (available at http://www.umi.com/hp/Products/DisExpress.html, order number 9907167).

  20. Lai, M.-C., and C. S. Peskin. 2000. An immersed boundary method with formal second order accuracy and reduced numerical viscosity. Journal of Computational Physics 160, 705–719.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. LeVeque, R. J., and Z. Li. 1997. Immersed interface methods for Stokes flow with elastic boundaries or surface tension. SIAM Journal on Scientific Computing 18, 709–735.

    Article  MathSciNet  MATH  Google Scholar 

  22. Peskin, C. S., and D. M. McQueen. 1989. A three-dimensional computational method for blood flow in the heart: (I) immersed elastic fibers in a viscous incompressible fluid. Journal of Computational Physics 81, 372–405.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Peskin, C. S., and D. M. McQueen. 1993. Computational biofluid dynamics. Contemporary Mathematics 141, 161–186.

    MathSciNet  Google Scholar 

  24. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. 1986. Numerical Recipes. Cambridge: Cambridge University Press, 550–551.

    Google Scholar 

  25. McQueen, D. M., and C. S. Peskin. 2000. A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. Computer Graphics 34, 56–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

McQueen, D.M., Peskin, C.S. (2001). Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_27

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics