Skip to main content

Hierarchical Model- and Discretization-error Estimation of Elasto-plastic Structures

  • Conference paper
Mechanics for a New Mellennium

Abstract

A posteriori error estimators of the discretization and model errors are presented for finite-element solutions of small-strain elasto-plasticity and large-strain elasticity problems. The described posterior equilibrium method (PEM) also yields anisotropic error indicators that are more efficient for thin-walled structures than isotropic ones. The model error in a sequence of hierarchical mathematical models and related dimensions can be as important as the discretization error. Therefore, integrated error-controlled adaptivity of finite-element approximations and of models in relevant subdomains, such as thickness jumps, is a challenging task for complex engineering structures. The posterior equilibrium method yields an effective estimation of discretization errors and model errors in general. Based on this approach, an upper bound of the error in a local quantity of interest can be obtained by solving an auxiliary local Neumann problem for the error of the dual problem. Some illustrative examples show the numerical and physical features of the methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank, R. E., and A. Weiser. 1985. Some a posteriori error estimators for elliptic partial differential equations. Mathematics of Computation 44, 283–301.

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., and J. T. Oden. 1993. A unified approach to a posteriori error estimation based on element residual methods. Numerische Mathematik 65, 23–50.

    Article  MathSciNet  MATH  Google Scholar 

  3. Stein, E., and S. Ohnimus. 1997. Coupled model-and solution-adaptivity in the finite-element method. Computer Methods in Applied Mechanics and Engineering 150, 327–350.

    Article  MathSciNet  MATH  Google Scholar 

  4. Stein, E., and S. Ohnimus. 1999. Anisotropic discretization-and model-error estimation in solid mechanics by local Neumann problems. Computer Methods in Applied Mechanics and Engineering 176, 363–385.

    Article  MathSciNet  MATH  Google Scholar 

  5. Johnson, C. 1993. A new paradigm for adaptive finite element methods. Proceedings of The Mathematics of Finite Elements and Applications (MAFELAP) 93. New York: Wiley.

    Google Scholar 

  6. Becker, R., and R. Rannacher. 1996. A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West Journal of Numerical Mathematics 4, 237–264.

    MathSciNet  MATH  Google Scholar 

  7. Rannacher, R., and F.-T. Suttmeier. 1997. A feed-back approach to error control in finite element methods: Application to linear elasticity. Computational Mechanics 19, 434–446.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Cirak, F., and E. Ramm. 1998. A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Computer Methods in Applied Mechanics and Engineering 156, 351–362.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ohnimus, S., E. Stein, and E. Walhorn. 2000. Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems. International Journal of Numerical Methods in Engineering, submitted.

    Google Scholar 

  10. Babuška, I., and A. Miller. 1987. A feedback finite element method with a posteriori errorestimation: Part I. The finite element method and some basic properties of the a posteriori error estimator. Computer Methods in Applied Mechanics and Engineering 61, 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bufler, H., and E. Stein. 1970. Zur Plattenberechnung mittels Finiter Elemente. Ingenieur-Archiv 39, 248–260.

    Article  MATH  Google Scholar 

  12. Stein, E., and R. Ahmad. 1977. An equilibrium method for stress calculation using finite element methods in solid-and structural-mechanics. Computer Methods in Applied Mechanics and Engineering 10, 175–198.

    Article  MATH  Google Scholar 

  13. Ladevèze, P., and D. Leguillon. 1983. Error estimate procedure in the finite element method and applications. SIAM Journal of Numerical Analysis 20, 485–509.

    Article  MATH  ADS  Google Scholar 

  14. Ainsworth, M., and J. T. Oden. 1997. A posteriori error estimation in finite-element analysis. Computer Methods in Applied Mechanics and Engineering 142, 1–88.

    Article  MathSciNet  MATH  Google Scholar 

  15. RĂ¼ter, M., S. Ohnimus, and E. Stein. 2001. On global and local a posteriori error estimation in finite elasticity. In preparation.

    Google Scholar 

  16. Brink, U., and E. Stein. 1998. A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems. Computer Methods in Applied Mechanics and Engineering 161, 77–101.

    Article  MathSciNet  MATH  Google Scholar 

  17. RĂ¼ter, M., and E. Stein. 2000. Analysis, finite element computation and error estimation in transversely isotropic nearly incompressible finite elasticity. Computer Methods in Applied Mechanics and Engineering 190, 519–541.

    Article  MathSciNet  MATH  Google Scholar 

  18. Eriksson, K., D. Estep, P. Hansbo, and C. Johnson. 1995. Introduction to adaptive methods for differential equations. Acta Numerica, 106–158.

    Google Scholar 

  19. Prudhomme, S., and J. T. Oden. 1999. On goal-oriented error estimation for local elliptic problems: Application to the control of pointwise errors. Computer Methods in Applied Mechanics and Engineering 176, 313–331.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Stein, E., Ohnimus, S., RĂ¼ter, M. (2001). Hierarchical Model- and Discretization-error Estimation of Elasto-plastic Structures. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_24

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics