Skip to main content

Kinetic and Continuum Descriptions of Granular Flows

  • Conference paper
Mechanics for a New Mellennium

Abstract

Unlike the basic units of molecular systems, the elementary constituents of granular matter (the grains) experience dissipative interactions. This fact is the root cause of many of the difficulties encountered in the study of granular materials and among its major consequences are the existence of unique states and instabilities (e.g. collapse and clustering) as well as the multistable/metastable nature of most granular states. Another central consequence is the inherent lack of scale separation. The latter is responsible e.g. for the prominent normal stress differences (anisotropic pressures), long-range correlations, scale-dependent stress (and other) fields and, in general, the rheological nature of these materials. Constitutive relations and boundary conditions for dilute and near-elastic rapid granular flows have been derived from the pertinent Boltzmann equation with extensions to moderate densities obtained by employing the Enskog-Boltzmann equation or (systematically, via) response theory. Unlike the rapid flows, the dense, static and quasistatic regimes have not been treated in a systematic fashion heretofore. Preliminary results on elasticity in the static regime are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knowlton, T. M., J. W. Carson, G. E. Klitzing, and W.-C. Yang. April 1994. Particle technology: The importance of storage, transfer and collection. Chemical Engineering Progress 44, 44–54.

    Google Scholar 

  2. Jenike, A. W. 1964. Storage and flow of solids. Bulletin of the University of Utah Engineering Experiment Station 123.

    Google Scholar 

  3. Johnson, P. C., P. Nott, and R. Jackson. 1990. Frictional-collisional equations of motion of particulate flows and their application to chutes. Journal of Fluid Mechanics 210, 501–535.

    Article  ADS  Google Scholar 

  4. Campbell, C. S. 1990. Rapid granular flows. Annual Reviews of Fluid Mechanics 22, 57–92, and references therein.

    Article  ADS  Google Scholar 

  5. Ogawa, S., A. Unemura, and N. Oshima. 1980. On the equations of motion of fully fluidized granular materials. Zeitschrift für Mechanik und Physik 31, 482–493, and references therein.

    ADS  Google Scholar 

  6. For pioneering works in this field, see [5] and references therein, and Lun, C. K. K. 1991. Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. Journal of Fluid Mechanics 223, 539–559, and references therein.

    Article  ADS  Google Scholar 

  7. Goldshtein, A., and M. Shapiro. 1995. Mechanics of collisional motion of granular materials, Part I: General hydrodynamic equations. Journal of Fluid Mechanics 282, 75–114.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Sela, N., and I. Goldhirsch. 1995. Hydrodynamics of a one-dimensional granular medium. Physics of Fluids 7(3), 507–525.

    Article  ADS  MATH  Google Scholar 

  9. Goldhirsch, I., N. Sela, and S. H. Noskowicz. 1996. Kinetic theoretical study of a simply sheared granular gas—to Burnett order. Physics of Fluids 8(9), 2337–2353.

    Article  ADS  MATH  Google Scholar 

  10. Goldhirsch, I., and N. Sela. 1996. Origin of normal stress differences in rapid granular flows. Physical Review E 54(4), 4458–4461 (1996).

    Article  ADS  Google Scholar 

  11. Sela, N., and I. Goldhirsch. 1998. Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order. Journal of Fluid Mechanics 361, 41–74, and references therein.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Brey, J. J., F. Moreno, and J. W. Dufty. 1996. Model kinetic equations for low density granular flow. Physical Review E 54(1), 445–456.

    Article  ADS  Google Scholar 

  13. Brey, J. J., J. W. Dufty, C. S. Kim, and A. Santos. 1998. Hydrodynamics for granular flow at low density. Physical Review E 58, 4638–4653.

    Article  ADS  Google Scholar 

  14. Chapman, S., and T. G. Cowling. 1970. The Mathematical Theory of Nonuniform Gases. Cambridge: Cambridge University Press.

    Google Scholar 

  15. Tan, M.-L., and I. Goldhirsch. 1998. Rapid granular flows as mesoscopic systems. Physical Review Letters 81(14), 3022–3025.

    Article  ADS  Google Scholar 

  16. Jaeger, H. M., S. R. Nagel, and R. P. Behringer. 1996. Granular solids, liquids and gases. Reviews of Modern Physics 68(4), 1259–1273, and references therein.

    Article  ADS  Google Scholar 

  17. Haff, P. K. 1983. Grain flow as a fluid mechanical phenomenon. Journal of Fluid Mechanics 134, 401–430.

    Article  MATH  ADS  Google Scholar 

  18. Goldhirsch, I., and G. Zanetti. 1993. Clustering instability in dissipative gases. Physical Review Letters 70, 1619–1622. See also Goldhirsch, I., M.-L. Tan, and G. Zanetti. 1993. A molecular dynamical study of granular fluids I: The unforced granular gas in two dimensions. Journal of Scientific Computation 8(1), 1–40.

    Article  ADS  Google Scholar 

  19. Burnett, D. 1935. The distribution of molecular velocities and the mean motion in a nonuniform gas. Proceedings of the London Mathematical Society 40, 382–435.

    Article  MATH  Google Scholar 

  20. See, for example, Bobylev, A. V. 1984. Exact solutions of the nonlinear Boltzmann equation and the theory of Maxwell gas relaxation. Theoretical and Mathematical Physics 60(2) 280–310. See also Gorban, A. N., and I. V. Karlin. 1992. Structure and approximations of the Chapman-Enskog expansion for linearized Grad equations. Transport Theory and Statistical Physics 21, 101–117.

    Article  MathSciNet  MATH  Google Scholar 

  21. Rosenau, P. 1989. Extending hydrodynamics via the regularization of the Chapman-Enskog expansion. Physical Review A 40, 7193–7196.

    Article  MathSciNet  ADS  Google Scholar 

  22. Slemrod, M. 1999. Constitutive relations for monoatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansions. Archive for Rational Mechanics and Analysis 146, 73–90. See also Jin, S., and M. Slemrod. Regularization of the Burnett equations for fast granular flows via relaxation. 2000. Preprint.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Ernst, M. H., and J. R. Dorfman. 1976. Nonanalytic dispersion relations for classical fluids II: The general fluid. Journal of Statistical Physics 12(4), 311–357.

    Article  MathSciNet  ADS  Google Scholar 

  24. Lutsko, J. F. 1996. Molecular chaos, pair correlations and shear induced ordering of hard spheres. Physical Review Letters 77, 2225–2228.

    Article  ADS  Google Scholar 

  25. Luding, S., M. Miiller, and S. McNamara. 1998. The validity of molecular chaos in granular flows. World Congress on Particle Technology, Brighton. See also Soto, R., unpublished.

    Google Scholar 

  26. Tan, M.-L., and I. Goldhirsch. 1997. Intercluster interactions in rapid granular shear flows. Physics of Fluids 9(4), 856–869, and references therein.

    Article  ADS  Google Scholar 

  27. Glasser, B. J., and I. Goldhirsch. 1999. Scale dependence, correlations and fluctuations of stresses in rapid granular flows. Preprint.

    Google Scholar 

  28. Miller, B., C. O’Hern, and R. P. Behringer. 1996. Stress fluctuations for continuously sheared granular materials. Physical Review Letters 77, 3110–3113.

    Article  ADS  Google Scholar 

  29. Babic, M. 1997. Average balance equations for granular materials. International Journal of Engineering Science 35, 523–548.

    Article  MathSciNet  MATH  Google Scholar 

  30. Murdoch, A. I. 1998. On effecting averages and changes of scale via weighting functions. Archives of Mechanics 50, 531–539, and references therein.

    MATH  Google Scholar 

  31. Hopkins, M. A., and M. Y. Louge. 1991. Inelastic microstructure in rapid granular flows of smooth disks. Physics of Fluids A 3(1), 47–57.

    Article  ADS  Google Scholar 

  32. McNamara, S., and W. R. Young. 1992. Inelastic collapse and clumping in a one-dimensional granular medium. 1992. Physics of Fluids A 4, 496–504. Recent work is cited in Kadanoff, L. P. 1999. Built upon sand: Theoretical ideas inspired by granular flows. Reviews of Modern Physics 71(1), 435–444.

    Article  ADS  Google Scholar 

  33. Goldhirsch, I., and T. P. C. van Noije. 2000. Green-Kubo relations for granular fluids. Physical Review E 61(3), 3241–3244.

    Article  ADS  Google Scholar 

  34. For previous work on boundary conditions for granular gases, see Jenkins, J. T., and E. Askari. 1991. Boundary conditions for rapid granular flows. Journal of Fluid Mechanics 223, 497–508, and references therein.

    Article  ADS  Google Scholar 

  35. Goldhirsch, I. 1999. Scales and kinetics of granular flows. Chaos 9(3), 659–672.

    Article  MATH  ADS  Google Scholar 

  36. Ronis, D. 1979. Statistical mechanics of systems nonlinearly displaced from equilibrium I. Physica 99A, 403–434.

    ADS  Google Scholar 

  37. See, for example, Liao, C.-L., T.-P. Chang, D.-H. Young, and C. S. Chang. 1997. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal of Solids and Structures 34, 4087–4100.

    Article  MATH  Google Scholar 

  38. Goldenberg, C., and I. Goldhirsch. 2000. Elasticity of microscopically inhomogeneous systems. Preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Goldhirsch, I. (2001). Kinetic and Continuum Descriptions of Granular Flows. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_22

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics