Skip to main content

Recent Advances in Turbulent Mixing

  • Conference paper
Mechanics for a New Mellennium

Abstract

Experimental, modeling, and direct-numerical-simulation (DNS) studies have advanced our understanding of turbulence and mixing. The mixing transition that occurs across a broad spectrum of flows at outerscale Reynolds numbers in the vicinity of Re δ ≈ 1−2 × 10 4, or Taylor Reynolds numbers of Re T ≈ 100−140 will be discussed. Inflow-/initial-condition effects in high-Re shear layers will also be discussed. Comparisons between DNS studies of strained diffusion-flame regions and experiments in chemically reacting shear layers provide some new insight in the overall chemical-product formation. DNS studies of the Rayleigh-Taylor instability (RTI) between miscible fluids, with identical boundary conditions and different initial perturbations, reveal an initial-growth regime dominated by diffusion, with a subsequent nonlinear growth that depends on the details of the initial perturbations for as long as the simulations were run. Mixing in RTI flow is found even more sensitively dependent on initial conditions. The discussion concludes with some general comments on high-Re turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kolmogorov, A. N. 1941. Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Akademiia Nauk SSSR Doklady 30, 301–305.

    MATH  ADS  Google Scholar 

  2. Kolmogorov, A. N. 1941. Dissipation of energy in locally isotropic turbulence. Akademiia Nauk SSSR Doklady 32, 19–21.

    Google Scholar 

  3. Batchelor, G. K. 1959. Smallscale variation of convected quantities like temperature in turbulent fluid. Part I—General discussion and the case of small conductivity. Journal of Fluid Mechanics 5, 113–133.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Batchelor, G. K. 1953. The Theory of Homogeneous Turbulence. Cambridge, U.K.: Cambridge University Press.

    MATH  Google Scholar 

  5. Tennekes, H., and J. L. Lumley. 1972. A First Course in Turbulence. Cambridge, Mass.: MIT Press.

    Google Scholar 

  6. Kolmogorov, A. N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal of Fluid Mechanics 13, 82–85.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Oboukhov, A. M. 1962. Some specific features of atmospheric turbulence. Journal of Fluid Mechanics 13, 77–81.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Monin, A. S., A. M. Yaglom, and J. Lumley (eds.). 1975. Statistical Fluid Mechanics, Vol. 2: Mechanics of Turbulence. Cambridge, Mass.: MIT Press.

    Google Scholar 

  9. Hinze, J. O. 1975. Turbulence, 2nd ed. New York: McGraw-Hill.

    Google Scholar 

  10. Dimotakis, P. E. 2000. The mixing transition in turbulence. Journal of Fluid Mechanics 409, 69–97.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Konrad, J. H. 1976. An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  12. Bernal, L. P., R. E. Breidenthal, G. L. Brown, J. H. Konrad, and A. Roshko. 1979. On the development of three-dimensional small scales in turbulent mixing layers. Proceedings of the 2nd International Symposium on Turbulent Shear Flows. New York: Springer-Verlag, 305–313.

    Google Scholar 

  13. Koochesfahani, M. M., and P. E. Dimotakis. 1986. Mixing and chemical reactions in a turbulent liquid mixing layer. Journal of Fluid Mechanics 170, 83–112.

    Article  ADS  Google Scholar 

  14. Dimotakis, P. E., R. C. Miake-Lye, and D. A. Papantoniou. 1983. Structure and dynamics of round turbulent jets. Physics of Fluids 26, 3185–3192.

    Article  ADS  Google Scholar 

  15. Gilbrech, R. J. 1991. An experimental investigation of chemically-reacting, gasphase turbulent jets. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  16. Gilbrech, R. J., and P. E. Dimotakis. 1992. Product formation in chemicallyreacting turbulent jets. AIAA 30th Aerospace Sciences Meeting, Paper 92-0581.

    Google Scholar 

  17. Shan, J. W. 2001. Mixing and isosurface geometry in turbulent transverse jets. Ph.D. thesis, California Institute of Technology.

    Google Scholar 

  18. Catrakis, H. J., and P. E. Dimotakis. 1996. Mixing in turbulent jets: Scalar measures and isosurface geometry. Journal of Fluid Mechanics 317, 369–406.

    Article  ADS  Google Scholar 

  19. Dimotakis, P. E., and H. J. Catrakis. 1996. Turbulence, fractals, and mixing. NATO Advanced Studies Institute series on Mixing: Chaos and Turbulence. Report FM97-1, Graduate Aeronautical Laboratory, California Institute of Technology.

    Google Scholar 

  20. Slessor, M. D., C. L. Bond, and P. E. Dimotakis. 1998. Turbulent shear-layer mixing at high Reynolds numbers: Effects of inflow conditions. Journal of Fluid Mechanics 376, 115–138.

    Article  ADS  MATH  Google Scholar 

  21. Bradshaw, P. 1966. The effect of initial conditions on the development of a free shear layer. Journal of Fluid Mechanics 26(2), 225–236.

    Article  ADS  Google Scholar 

  22. Dimotakis, P. E., and G. L. Brown. 1976. The mixing layer at high Reynolds number: Large-structure dynamics and entrainment. Journal of Fluid Mechanics 78, 535–560 + 2 plates.

    Article  ADS  Google Scholar 

  23. Ho, C.-M., and P. Huerre. 1984. Perturbed free shear layers. Annual Review of Fluid Mechanics 16, 365–424.

    Article  ADS  Google Scholar 

  24. Karasso, P. S., and M. G. Mungal. 1996. Scalar mixing and reaction in plane liquid shear layers. Journal of Fluid Mechanics 323, 23–63.

    Article  ADS  Google Scholar 

  25. Mungal, M. G., and P. E. Dimotakis. 1984. Mixing and combustion with low heat release in a turbulent mixing layer. Journal of Fluid Mechanics 148, 349–382.

    Article  ADS  Google Scholar 

  26. Broadwell, J. E., and R. E. Breidenthal. 1982. A simple model of mixing and chemical reaction in a turbulent shear layer. Journal of Fluid Mechanics 125, 397–410.

    Article  ADS  Google Scholar 

  27. Broadwell, J. E., and M. G. Mungal. 1991. Large-scale structures and molecular mixing. Physics of Fluids A 3(5), Part 2, 1193–1206.

    Article  ADS  Google Scholar 

  28. Dimotakis, P. E. 1987. Turbulent shear layer mixing with fast chemical reactions. In Turbulent Reactive Flows (R. Borghi and S. N. B. Murthy, eds.), Lecture notes in Engineering 40. New York: Springer-Verlag, 417–485.

    Google Scholar 

  29. Peters, N. 1984. Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science 10, 319–339.

    Article  Google Scholar 

  30. Dimotakis, P. E. 1991. Turbulent free shear layer mixing and combustion. Chapter 5 in High Speed Flight Propulsion Systems. Progress in Astronautics and Aeronautics 137, 265–340.

    Google Scholar 

  31. Egolfopoulos, F. N., P. E. Dimotakis, and C. L. Bond. 1996. On strained flames with hypergolic reactants: The H2/NO/F2 system in high-speed, supersonic and subsonic mixing-layer combustion. Proceedings of the 26th International Combustion Symposium, 2885–2893.

    Google Scholar 

  32. Rayleigh, Lord. 1883. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proceedings of the London Mathematical Society 14, 170–177.

    Article  Google Scholar 

  33. Taylor, G. I. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proceedings of the Royal Society of London A 201, 192–196.

    Article  MATH  ADS  Google Scholar 

  34. Duff, R. E., F. H. Harlow, and C. W. Hirt. 1962. Effects of diffusion on interface instability between gases. Physics of Fluids 5, 417–425.

    Article  MATH  ADS  Google Scholar 

  35. Sharp, D. H. 1984. An overview of Rayleigh-Taylor instability. Physica D 12, 3–18.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Annuchina, N. N., Yu. A. Kucherenko, V. E. Neuvazhaev, V. N. Ogibina, L. I. Shibarshov, and V. G. Yakovlev. 1978. Turbulent mixing at an accelerating interface between liquids of different densities. Izvestiia Akademiia Nauk SSSR, Mekhanika Zhidkosti i Gaza 6, 157–160.

    Google Scholar 

  37. Read, K. I. 1984. Experimental investigation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12, 45–58.

    Article  ADS  Google Scholar 

  38. Youngs, D. L. 1984. Numerical simulation of turbulent mixing by Rayleigh-Taylor instability. Physica D 12, 32–44.

    Article  ADS  Google Scholar 

  39. Dimonte, G., and M. Schneider. 2000. Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories. Physics of Fluids 12, 304–321.

    Article  ADS  MATH  Google Scholar 

  40. Cook, A. W., and P. E. Dimotakis. 2000. Transition stages of Rayleigh-Taylor instability between miscible fluids. Report No. UCRL-JC-139044, Lawrence Livermore National Laboratory. Journal of Fluid Mechanics (submitted).

    Google Scholar 

  41. Dimotakis, P. E. 1997. Non-premixed hydrocarbon flame. Nonlinearity 7, 1–2.

    Article  ADS  Google Scholar 

  42. George, W. 2000. Decay of isotropic turbulence. Physics of Hydrodynamic Turbulence (31 Jan–30 June, 2000, University of California, Santa Barbara), http://online.itp.ucsb.edu/online/hydrot00/george/.

    Google Scholar 

  43. Pullin, D. I. 2000. A vortex-based model for the subgrid flux of a passive scalar. Physics of Fluids 12, 2311–2319.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Dimotakis, P.E. (2001). Recent Advances in Turbulent Mixing. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_21

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics