Skip to main content

Hard Problems with Soft Materials: The Mechanics of Foams

  • Conference paper
Mechanics for a New Mellennium
  • 1024 Accesses

Abstract

The static properties of foams with low liquid fraction are now well understood. We review current topics of foam research, which include the search for appropriate boundary conditions for drainage models, and dynamic effects, such as convective bubble motion. The formation of metal foams poses interesting problems with regard to the solidification of draining metal during the cooling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weaire, D., and S. Hutzler. 1999. The Physics of Foams. Oxford: Oxford University Press.

    Google Scholar 

  2. Zitha, P. L. J. (ed.). 2000. Proceedings of EuroFoam 2000, the EuroConference on Foams, Emulsions and Applications. Delft: Kluwer.

    Google Scholar 

  3. Brakke, K. 1992. The Surface Evolver. Experimental Mathematics 1, 141–165.

    MathSciNet  MATH  Google Scholar 

  4. Princen, H. M. 1986. Osmotic pressure of foams and highly concentrated emulsions—I. Theoretical considerations. Langmuir 2, 519–524.

    Article  Google Scholar 

  5. Princen, H. M., and A. D. Kiss. 1987. Osmoticpressure of foams and highly concentrated emulsions—II. Determination from the variation in volume fraction with height in an equilibrated column. Langmuir 3, 36–41.

    Article  Google Scholar 

  6. Leonard, R. A., and R. Lemlich. 1965. A study of interstitial liquid flow in foam—Part I. Theoretical model and application to foam fractionation. American Institute of Chemical Engineers Journal 11, 18–25.

    Google Scholar 

  7. Leonard, R. A., and R. Lemlich. 1965. A study of interstitial liquid flow in foam—Part II. Experimental verification and observations. American Institute of Chemical Engineers Journal 11, 25–29.

    Google Scholar 

  8. Shih, F. S., and R. Lemlich. 1967. A study of interstitial liquid flow in foam—Part III. Test of theory. American Institute of Chemical Engineers Journal 13, 751–754.

    Google Scholar 

  9. Weaire, D., S. Hutzler, G. Verbist, and E. A. J. F. Peters. 1997. A review of foam drainage. Advances in Chemical Physics 102, 315–374.

    Article  Google Scholar 

  10. Cox, S. J., D. Weaire, S. Hutzler, J. Murphy, R. Phelan, and G. Verbist. 2000. Applications and generalizations of the foam drainage equation. Proceedings of the Royal Society of London A 456, 2441–2464.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Koehler, S. A., S. Hilgenfeldt, and H. A. Stone. 1999. Liquid flow through aqueous foams: The node-dominated drainage equation. Physical Review Letters 82, 4232–4235.

    Article  ADS  Google Scholar 

  12. Exerowa, D., and P. M. Kruglyakov. 1998. Foam and Foam Films. Amsterdam: Elsevier.

    Google Scholar 

  13. Hutzler, S., D. Weaire, and R. Crawford. 1998. Convective instability in foam drainage. Europhysics Letters 41, 461–465.

    Article  ADS  Google Scholar 

  14. Vera, M. U., A, Saint-Jalmes, and D. J. Durian. 2000. Instabilities in a liquid-fluidized bed of gas bubbles. Physical Review Letters 84, 3001–3004.

    Article  ADS  Google Scholar 

  15. Neethling, S., and J. J. Cilliers. 1999. Visualization and drainage of coalescing, flowing foams. In Foams and Films (D. Weaire and J. Banhart, eds.). Bremen: MIT-Verlag.

    Google Scholar 

  16. Weaire, D., and M. A. Fortes. 1994. Stress and strain in liquid foams. Advances in Physics 43, 685–738.

    Article  ADS  Google Scholar 

  17. Bolton, F., and D. Weaire. 1991. The effects of Plateau borders in the two-dimensional soap froth—I. Decoration lemma and diffusion theorems. Philosophical Magazine B 63, 795–809.

    Article  Google Scholar 

  18. Bolton, F., and D. Weaire. 1992. The effects of Plateau borders in the two-dimensional soap froth—II. General simulation and analysis of rigidity loss transition. Philosophical Magazine B 65, 473–487.

    Article  Google Scholar 

  19. Kraynik, A. M., M. K. Neilsen, D. A. Reinelt, and W. E. Warren. 1999. Foam micromechanics. In Foams and Emulsions (J. F. Sadoc and N. Rivier, eds.). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  20. Durian, D. J. 1997. Bubble-scale model of foam mechanics: Melting, nonlinear behaviour, and avalanches. Physical Review E 55, 1739–1751.

    Article  ADS  Google Scholar 

  21. Hutzler, S., D. Weaire, and F. Bolton. 1995. The effects of Plateau borders in the two-dimensional soap froth—III. Further results. Philosophical Magazine B 71, 277–289.

    Article  Google Scholar 

  22. Jiang, Y., P. J. Swart, A. Saxena, M. Asipauskas, and J. A. Glazier. 1999. Hysteresis and avalanches in two-dimensional foam rheology simulations. Physical Review E 59 5819–5832.

    Article  ADS  Google Scholar 

  23. Abd el Kader, A., and J. C. Earnshaw. 1999. Shear-induced changes in two-dimensional foam. Physical Review Letters 82, 2610–2613.

    Article  ADS  Google Scholar 

  24. Gibson, L. J., and M. F. Ashby. 1997. Cellular Solids—Structure and Properties, 2nd ed. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Kraynik, A. M. 1988. Foam flows. Annual Review of Fluid Mechanics 20, 325–357.

    Article  ADS  Google Scholar 

  26. Princen, H. M. 2000. To be published.

    Google Scholar 

  27. Khan, S. A., and R. C. Armstrong. 1986. Rheology of foams: I. Theory for dry foams. Journal of Non-Newtonian Fluid Mechanics 20, 1–22.

    Article  Google Scholar 

  28. Schwartz, L. W., and H. M. Princen. 1987. A theory of extensional viscosity for flowing foams and concentrated emulsions. Journal of Colloid Interface Science 118, 201–211.

    Article  Google Scholar 

  29. Cox, S. J., G. Bradley, and D. Weaire. 2000. Modelling metallic foam formation: The competition between heat transfer and drainage. Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Weaire, D.L., Hutzler, S. (2001). Hard Problems with Soft Materials: The Mechanics of Foams. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics