Skip to main content

Electromagnetic Phenomena in Crystal Growth

  • Conference paper
Mechanics for a New Mellennium
  • 1002 Accesses

Abstract

Integrated circuits and optical devices are produced on wafers sliced from single crystals that are grown from a body of liquid semiconductor or melt. The crystal must have few defects, such as dislocations, and must have uniform distributions of dopants, which are added to the melt to give the crystal the desired electrical or optical properties. Since molten semiconductors have large electrical conductivities, magnetic fields can be used to eliminate hydrodynamic instabilities in the melt and to tailor the convective dopant transport. For silicon, controlling the convective transport of oxygen is important, and a particular nonuniform axisymmetric magnetic field is optimal for this purpose. For compound semiconductors, such as gallium-arsenide, eliminating instabilities in the buoyant convection is necessary for the growth of large crystals with few defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becla, P., J. C. Han, and S. Motakef. 1992. Application of strong vertical magnetic fields to growth of II–VI pseudo-binary alloys: HgMnTe. Journal of Crystal Growth 121, 394–398.

    Article  ADS  Google Scholar 

  • Bliss, D. F., R. M. Hilton, and J. A. Adamski. 1993. MLEK crystal growth of large diameter (100) indium phosphide. Journal of Crystal Growth 128, 451–445.

    Article  ADS  Google Scholar 

  • Davidson, P. A., and J. C. R. Hunt. 1987. Swirling recirculating flow in a liquid-metal column generated by a rotating magnetic field. Journal of Fluid Mechanics 185, 67–106.

    Article  ADS  MATH  Google Scholar 

  • Davidson, P. A. 1992. Swirling flow in an axisymmetric cavity of arbitrary profile, driven by a rotating magnetic field. Journal of Fluid Mechanics 245, 669–699.

    Article  MATH  ADS  Google Scholar 

  • Davidson, P. A., D. J. Short, and D. Kinnear. 1995. The role of Ekman pumping in confined electromagnetically driven flows. European Journal of Mechanics B/Fluids 14, 795–821.

    MathSciNet  MATH  Google Scholar 

  • Davidson, P. A., D. Kinnear, R. J. Lingwood, D. J. Short, and X. He. 1999. The role of Ekman pumping and the dominance of swirl in confined flows driven by Lorentz forces. European Journal of Mechanics B/Fluids 18, 693–711.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Dold, P., and K. W. Benz. 1999. Rotating magnetic fields: Fluid flow and crystal growth applications. Progress in Crystal Growth and Characterization of Materials 38, 7–38.

    Article  Google Scholar 

  • Garandet, J. P. 1993. Microsegregation in crystal growth from a melt: An analytical approach. Journal of Crystal Growth 131, 431–438.

    Article  ADS  Google Scholar 

  • Hirata, H., and K. Hoshikawa. 1989. Silicon crystal growth in a cusp magnetic field. Journal of Crystal Growth 96, 747–755.

    Article  ADS  Google Scholar 

  • Hurle, D. T. J., and R. W. Series. 1994. Use of a magnetic field in melt growth. In Handbook of Crystal Growth 2, Bulk Crystal Growth. Amsterdam: North-Holland, 259–285.

    Google Scholar 

  • Kuroda, E., H. Kozuka, and Y. Takano. 1984. The effect of temperature oscillations at the growth interface on crystal perfection. Journal of Crystal Growth 68, 613–623.

    Article  ADS  Google Scholar 

  • Ravishankar, P. S., T. T. Braggins, and R. N. Thomas. 1990. Impurities in commercial-scale magnetic Czochralski silicon: Axial versus transverse magnetic fields. Journal of Crystal Growth 104, 617–628.

    Article  ADS  Google Scholar 

  • Series, R. W. 1989. Effect of a shaped magnetic field on Czochralski silicongrowth. Journal of Crystal Growth 97, 92–98.

    Article  ADS  Google Scholar 

  • Watring, D. A., and S. L. Lehoczky. 1996. Magnetohydrodynamic damping of convection during vertical Bridgman-Stockbarger growth of HgCdTe. Journal of Crystal Growth 167, 478–487.

    Article  ADS  Google Scholar 

  • Wilson, L. O. 1980. The effect of fluctuating growth rates on segregation in crystals grown from the melt, I. No backmelting, II. Backmelting. Journal of Crystal Growth 48, 435–458.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this paper

Cite this paper

Walker, J.S. (2001). Electromagnetic Phenomena in Crystal Growth. In: Aref, H., Phillips, J.W. (eds) Mechanics for a New Mellennium. Springer, Dordrecht. https://doi.org/10.1007/0-306-46956-1_14

Download citation

  • DOI: https://doi.org/10.1007/0-306-46956-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7156-4

  • Online ISBN: 978-0-306-46956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics