Energy Flux in Elasticity and Electromagnetism

  • Philippe Boulanger
  • Michael Hayes
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 91)


Here we present properties of the energy flux vector and the energy density of time-harmonic homogeneous and inhomogeneous plane waves. General results are presented for systems which are linear, conservative, and for which the energy flux vector and energy density involve products of pairs of field quantities. Specific new results are given in the case of linear anisotropic elasticity and electromagnetism. Finite-amplitude plane waves in Mooney-Rivlin elastic materials are also considered.


Energy Density Energy Flux Phase Speed Cauchy Stress Tensor Energy Conservation Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boulanger, Ph. and Hayes, M. (1993). Bivectors and waves in mechanics and optics. London: Chapman & Hall.zbMATHGoogle Scholar
  2. [2]
    Hayes, M. (1977). Proc. R. Soc. Lond. A354: 533–535.ADSGoogle Scholar
  3. [3]
    Boulanger, Ph. and Hayes, M. (1992). Q. Jl Mech. appl. Math. 45: 575–593.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Boulanger, Ph. and Hayes, M. (1995). ibid. 48: 427–464.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Hayes, M. and Rivlin, R.S. (1971). Z. angew. Math. Phys. 22: 1173–6.CrossRefGoogle Scholar
  6. [6]
    Rayleigh, Lord (1877). Proc. Lond. Math. Soc. 9: 21–26.CrossRefGoogle Scholar
  7. [7]
    Lighthill, M. J. (1960). Phil. Trans. R. Soc. Lond. A252: 397–430.ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    Bracken, A. private communication.Google Scholar
  9. [9]
    Hayes, M. (1975). Q. Jl. Mech. appl. Math. 28: 329–332.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    Synge, J. L. (1956). Proc. R. Irish Acad. A 58: 13–20.zbMATHMathSciNetGoogle Scholar
  11. [11]
    Hayes, M. (1980). Proc. R. Soc. Lond. A370: 417–429.ADSGoogle Scholar
  12. [12]
    Buchen, P. W. (1971). J. R. Astr. Soc. 23: 531–542.zbMATHGoogle Scholar
  13. [13]
    Boulanger, Ph. and Hayes, M. (1990). Phil. Trans. R. Soc. Lond. A 330: 335–393.ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    Fedorov, F. I. (1968). Theory of Elastic Waves in Crystals. New York: Plenum Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Philippe Boulanger
    • 1
  • Michael Hayes
    • 2
  1. 1.Université Libre de BruxellesBruxellesBelgium
  2. 2.University College DublinDublin 4Ireland

Personalised recommendations